
Based on Past Experience: Highlighting Potential
Human Value Issues in Domain Modelling

Jasneet Kaur
Dept. ECE, McGill University

Montreal, QC, Canada
jasneet.kaur@mail.mcgill.ca

Gunter Mussbacher
Dept. ECE, McGill University

Montreal, QC, Canada
gunter.mussbacher@mcgill.ca

Abstract—In this technologically evolving era, important hu-
man values such as freedom and social responsibility are fre-
quently overlooked in software systems, which can have sig-
nificant negative social consequences as can be seen by recent
examples involving Facebook or Delta Airlines. Therefore, it is
important to help software developers incorporate human values
considerations throughout the software development process. In
this paper, we focus on domain modelling with class diagrams,
an important technique for requirements engineering and early
design activities. We propose a domain-specific language called
HVT (Human Value Trigger) that enables the collection of human
value issues including how to mitigate them. Practitioners may
utilize this language to contribute more such examples to grow
a catalogue of these past experiences over time. As a motivating
example, we analyze the domain model of WhatsApp through
the lens of Schwartz’s taxonomy of human values to compile
a list of issues concerning human values (i.e., model elements
that may affect various human values). Furthermore as proof-
of-concept, a prototype implementation addresses the need for
human values to be integrated in domain models with the help of
these collected past experiences by providing suggestions based on
the model element type, name, and semantics based on synonyms.
An analysis of eight synonym services is performed to find the
optimal synonym service or combination of synonym services to
use with the implementation.

Index Terms—Human values, domain model, synonyms

I. INTRODUCTION

Human values are crucial in life and serve as an inspiration
for all of one’s action. People use values as a criterion to assess
actions, people, and events. We all have a variety of values
that are important to us in different ways. In recent years,
there has been an increased focus on the impact of systems on
human values [1]. Modern socio-technical systems have great
influence on the interpersonal relationships amongst people
as well as human-machine interactions. Due to their ever-
increasing importance and wide-ranging impact on our daily
lives and society in general, it is crucial to incorporate human
values into these system. When these values are missed, they
often lead to considerable social consequences. For example,
Facebook provided unauthorized access to more than 50
million user profiles to a data firm during US elections which
were subsequently utilized to customize political adverts for
individual US voters to influence their voting decisions [2].
The ticket reservation system of Delta Air Lines charged
people evacuating from areas hit by Hurricane Irma five times
more than the usual ticket price. It was seen as a breach of

human values by the system [3]. In another instance, Instagram
was partially blamed for the suicide of a British teenager who
was exposed to self-harming images ‘normalized’ among other
images [4]. Consequently, it is important to incorporate human
values considerations throughout software development.

However, considering human values in software engineering
is challenging due to the lack of methods to track and incor-
porate those values in all phases of the software development
cycle. This leads to the development of software systems that
act in a different way than anticipated and have detrimental
consequences. Galhotra et al. [5] highlight these incidents and
express the necessity to integrate human values into software.

To incorporate human values in domain models1, this paper
proposes a domain-specific language called HVT (Human
Value Trigger) which captures past experience, i.e., different
examples for potential human value issues in domain mod-
els. This includes a detailed description that shows how the
presence or absence of model elements in the domain model
positively or negatively impacts the human values identified
by Schwartz’s taxonomy [6].

Furthermore, this paper proposes the Human Value Trigger
System (HVTS) that provides suggestions for a domain model
based on captured past experiences. The purpose of HVTS
is to make the modeller think of human values through
possible human value issues. The modeller still has to decide
whether an issue actually exists. The proposed system takes
two inputs, a domain model and a catalogue of human value
issues capturing past experience. The catalogue is defined with
HVT. The system iterates over the model elements of the
catalogue and the domain model and performs various checks
and comparisons. These checks and comparisons determine
suitable matches found based on model element type, name,
and semantics based on synonyms. The system presents the
matches as possible suggestions to the modeller. The modeller
manually assesses the impact of the suggestions, using the
impacts from the catalogue. The modeller then selects which
suggestions to incorporate in the domain model, and the
system integrates them into the domain model. To demonstrate
the feasibility of HVTS, a prototype tool that implements the
proposed system is developed as proof-of-concept.

1In this paper, domain model refers to a system domain model that specifies
only those domain aspects that will be represented by a system and not an
exploratory domain model that aims to capture the domain more broadly.

Furthermore, we analyze eight synonym services to find the
optimal synonym service or combination of synonym services
to use for HVTS during the matching process.

Section II explores background information and discusses
related work, Section III introduces a motivating example,
Section IV illustrates the metamodel used for HVT, Section V
elaborates the analysis of synonym services, and Section VI
concludes the paper and discusses future work.

II. BACKGROUND AND RELATED WORK

This section provides brief background information on
human values, domain modelling, and work done in the field
of human values in software engineering.

Human values are valuable in our life as they help us to
grow and develop. In 1992, Schwartz [6] [7] introduced the
basic theory of human values which defines ten broad category
values according to universal requirements of human existence
which are needs of the individual, social interaction, survival,
and welfare. The type of goal or motivation each human value
represents is the underlying means to set them apart from one
another. It measures these ten motivationally distinct category
values using 58 distinct values. The ten category values are
arranged in a circular structure as shown in Figure 1 to
depict the relations of conflict between different values. Values
located close to each other are complementary, whereas values
further apart tend to be in tension with each other and similarly
values which are diagonal are more opposite to each other and
are harder to reconcile. For example, values that highlight the
concern for welfare and the interest of others (universalism,
benevolence) conflict with the values that show an individual’s
own ambitions and control over others (power, achievement).
Some but not all values defined by Schwartz match typical
non-functional requirements. In our work, we use the values
defined by Schwartz to identify positive or negative impact on
them due to the presence or absence of model elements in a
domain model.

A domain model [8] is the visual depiction to describe
and model real world entities and relationships of a problem
domain. It is used to represent the selected concepts of a
domain to solve the problem. To create a domain model,
the Unified Modeling Language (UML) is used which is a
general-purpose modelling language to visualize the design of
a system [9]. In UML, a class diagram is one way to describe
the structure of the system. Basically, a domain model uses

Fig. 1. Schwartz’s Theory of Basic Human Values (adapted from source [7])

the class diagram notation to specify a particular problem.
However, a domain model does not use all model elements of
a class diagram (e.g., it does not specify operations) [10].

Human Values in Software Engineering. Waqar Hussain
et al. propose the Value Design Hub (VDH) [3] which consid-
ers social values when creating design patterns. To carry out
the valuefication of such patterns, this framework is created
with the collaboration of software developers, users, and social
scientists. Fundamentally, this study entails the collaborative
integration of social values in software design patterns.

With respect to this work, our research focuses – instead of
design patterns – on domain modelling with class diagrams,
an important technique for requirements engineering and early
design activities. We design a prototype tool which addresses
the need for human values to be integrated in software
engineering by providing suggestions for a domain model.

Mougouei et al. offer a roadmap to operationalize Human
Values in Software [11]. This work focuses on identifying
challenges faced while integrating human values in software.
The major problem highlighted by this paper includes the lack
of practical definitions that are applicable to software designs.
Our work focuses on identifying frequently overlooked human
values in domain models based on past experiences and
providing recommendations to incorporate them. This helps
in making design decisions while considering human values.

Perera et al. investigate the General Data Protection Reg-
ulation (GDPR) [12] to determine the extent to which it
encompasses fundamental human values. In their research, the
authors applied GDPR rights to understand GDPR principles
and then matched these principles to the widely recognized
Schwartz theory of basic human values. They demonstrate that
GDPR covers a variety of values such as power, security, and
universalism etc. and can be utilized to incorporate concrete
definitions to human values in the context of software.

Jon Whittle in his paper “Is Your Software Valueless?” [13]
talks about ignorance of human values such as compassion and
justice in software engineering. This article further emphasizes
on how values of the software developer community do not
align with broader values. Moreover, Jon Whittle et al. in
their article “A Case for Human Values in Software Engi-
neering” [1] emphasize on the significance of human values
in engineering by discussing some preliminary ideas on how
the not-for-profit industry incorporates human values. The first
insight highlights the need for practical definitions for human
values to work with projects. To accomplish this goal, the
authors suggested to consider the Schwartz taxonomy and then
generate value portraits which encapsulates the meaning of
values in the context of the project. This study also underlines
the method to provide value-based reasoning for requirements
or design choices which further assist team members to recall
their choices. Lastly, the authors talk about the need to
consider these documented values throughout the lifecycle of
software development.

Our research work is highly motivated by the above stated
work as we became aware of the significance of human
values in software engineering. Our work helps practitioners

in capturing the implications for human values based on past
experience in a catalogue using the domain-specific language
HVT. Also, it helps practitioners to address those values in a
new system with similar situations.

Mussbacher et al. [14] offer preliminary evidence that
a domain model indeed incorporates human values. They
propose enhanced guidelines for domain modelling to perform
human value analysis to further analyze domain models to
demonstrate how existence or absence of elements can have
considerable impact on the human values. To identify the do-
main model elements, the authors explore 58 values compiled
by the Schwartz taxonomy to describe the positive or negative
influence of these elements on values. They contend that
human value enriched modelling is useful to prevent system
rejection and detrimental societal effects.

With respect to the above stated work, we also investigate
an existing system to compile the list of issues concerning
human values using the Schwartz taxonomy. To capture these
experiences, we create a domain-specific language called HVT
(Human Value Trigger). Our work provides tool support for
the process described by Mussbacher et al. [14] by providing
suggestions based on the collected past experiences.

To facilitate systematic integration, tracing, and evaluation
of human values, Perera et al. [7] propose the Continual
Value(s) Assessment (CVA) framework which uses goal mod-
elling in combination with feature modelling. This study
illustrates the thinking that links design choices to human
values which ultimately ensures that the software development
life cycle is satisfying the value needs of stakeholders.

The above stated work focuses on goal modelling as it
handles the positive and negative interaction between different
needs. They extended this technique with value-based goals
with the help of a feature model that represents design choices
whereas this paper focuses on domain modelling and hence is
complementary to the work by Perera et al. [7].

Perera et al. investigate the publication of Software Engi-
neering conferences and journals (2015-2018) [15] for their
relevance to different human values and concluded that only
16% of these papers include human values and 41% of these
papers focus on security issues, i.e., very few publications
directly addressed the majority of the human values.

Galhotra et al. [5] propose a testing-based method to
measure the discrimination that may occur in software. In their
study, they evaluate twenty software systems and conclude that
discrimination is incorporated in software even though fairness
is the main goal of developers. The authors further express the
necessity to consider fairness testing during development.

Rifat Ara Shams et al. investigate existing Bangladeshi
agriculture mobile apps [16] to determine which user desired
values are taken into account when creating apps. The result
from this study gives guidance on the values to the developers
that they should consider when creating these apps.

Hussain et al. conducted a case study [17] to understand
changing software development practices by corporations to
accommodate human values properly while designing soft-
ware. This work outlines the relationship between developer’s

knowledge about values and the company’s culture and the
level at which values are considered during the development
process. Further, this paper discusses the difficulties faced by
developers to accommodate them throughout the process.

Nurwidyantoro et al. conducted an exploratory study [18]
to extract human values from software development artifacts
and use them to address human values throughout software
development. To accomplish this task, the authors conduct
interviews with software practitioners and develop a prototype
called “human value dashboard” to support the process. The
participants acknowledges that this process will raise aware-
ness of values among team members. Moreover, this study
concluded “requirement document” and “issue discussion” as
the most appropriate approach for employing artefacts as a
source of value identification in the dashboard.

Hussain et al. investigate one of the agile methodologies
“Scaled Agile Framework” [19] to introduce human values
in all software development phases. Their study highlights
existing artefacts including user stories, personas, roles, cer-
emonies, practices, and culture that can be modified to serve
as a potential intervention point for incorporating values.
Furthermore, the authors introduce new methods, e.g., values
companion, checklist, and value conversation, to address hu-
man values. Nurwidyantoro et al. present a case study to show
that human values are present in software development arte-
facts [20] and reveal that out of twenty values identified, ten
theme values (including conformity, pleasure, dignity, inclu-
siveness, sense of belonging, freedom, independence, wealth,
privacy, and security) directly correspond to Schwartz’s human
values, while the other ten are more technical and termed
as system value themes (trust, correctness, compatibility,
portability, reliability, efficiency, energy preservation, usability,
accessibility, and longevity).

With respect to the above stated work, our work focuses
on providing tool support for the detection of potential human
value issues in domain models and provides suggestions based
on a catalogue of captured past experiences.

III. MOTIVATING EXAMPLE

This section investigates an example system to motivate our
approach to include human values-based elements in domain
modelling. We examine the domain model for the WhatsApp
System considering the human values in Schwartz’s taxonomy.
WhatsApp is a chat application that provides instant messaging
and calling services to its user. Figure 2 exhibits all the key
classes, attributes, and relationships for the domain model of
the WhatsApp system. For this example, we followed the
process suggested for addressing human values in a domain
model [14]. The initial step involves identifying the classes,
then related attributes, associations, compositions, aggrega-
tion, association classes, and generalization are considered
without taking human values explicitly into account. The
next step includes the analysis of usage scenarios, i.e., we
considered various features of WhatsApp such as privacy,
document sharing, messaging privately, emojis, video, and
voice calls. The final step performs human values analysis

Fig. 2. WhatsApp Domain Model

using Schwartz’s theory to identify model elements and the
impact on human values. This is an iterative process even
though its description is rather sequential. The domain model
under discussion is created by the authors based on their
knowledge and experience gained from the use of WhatsApp.

The domain model supports requirements such as user
registration, adding contacts, one to one chat, and group
chat. Different types of communication between the users are
covered such as text messages, voice calls, and video calls
but also multi-media messages, emojis, attachments, location
information, and contact information. Note that the subclasses
for different types of messages and calls are not shown in
Figure 2 due to space constraints. Privacy settings for the
profile photo and the status stories shared by the user on their
profile are captured. After scrutinizing the domain model in
terms of how different model elements interact with human
values, we have come up with scenarios where essential human
values were disregarded. Four scenarios are discussed here.

i) For the Group class, various WhatsApp groups exist and
anyone knowing of their existence can share information. So,
misinformation could potentially be shared by members from
one group to another which may lead to the circulation of
rumors and ultimately may cause societal disruption or even a
societal crisis. For example, elections may be manipulated by
conveying false information. Nothing in this domain model
indicates the verification of information being shared again
and again. Moreover, end-to-end encryption makes shared
messages immune to third parties, so it is difficult to trace back
to the origin. The absence of model elements to address these
issues may lead to violation of values like Privacy, Freedom,
and many more as defined by Schwartz’s taxonomy. In total,
we identify 19 values that may be impacted. To prevent this

breach, one could add the flag attribute in the Message Class
which can then be used as a poll to validate the information
according to the opinion shared by different people.

ii) For the ProfilePhoto class, we have only options like
Everyone, My Contacts, and Nobody to secure the privacy
of the profile picture. But sometimes people need to save a
random contact number to have one-time contact with another
person. There is a minute possibility that the profile photo can
be saved, e.g., by taking the screenshot which can be misused.
This could lead to the compromise of values such as Privacy,
Self-Respect, and many more. In total, we identify 7 values
that may be impacted. To avoid this situation, one could add
a custom based option for selecting the contacts with whom
the person wants to share the photo.

iii) Another possible scenario is that if a random person
somehow has the contact number of another person, then that
random person can send messages to the other person. While
the receiver has the option to block the sender after receiving
the message, that message can have an impact on the receiver
in various ways depending upon the type of information being
shared in the message. This has detrimental impact on values
like Privacy, Pleasure, and many more. In total, we identify 6
values that may be impacted. Nothing in this domain model
points to something that could have avoided this state. As a
precautionary measure, one could add the option to create a
whitelist of contact persons as a protection step.

iv) Lastly, people may get addicted to WhatsApp, doing the
same thing repeatedly which may result in reduced (or no)
interaction with other people. This negatively affects values
like Creativity, Healthy, and many more. In total, we identify
16 values that may be impacted. To eliminate this possibility,
one could add an attribute in the model for which a user can

enter the value as a time a person wants to spend on the app
and the user gets a notification when the entered time is over.

Based on the motivating example, we can see that value
assessment is challenging, and it is easy to overlook certain
circumstances unless the practitioner exhibits a profound un-
derstanding of the domain. Even with deep knowledge of hu-
man value issues, it is still possible that the potential concerns
may have been discussed during earlier phases in the software
development life cycle but may not have been thoroughly
documented or followed up on. Therefore, we observe the
need to capture these issues from the past experiences in a
catalogue so that when somebody builds a new system and
encounters a similar situation, they may use this information
to help them to be aware of the implications of human values
they might have in the new system.

So, the goal is to build a tool that flags potential human
value violations. This requires us to build a metamodel to
collect past experiences in a catalogue by capturing different
examples for human values and model elements. For example,
the above four scenarios where human values were disregarded
could be the first four examples in a catalogue of potential hu-
man value issues. Based on this, we formalize a DSL that can
express such detailed scenarios, the human values impacted
by a scenario, and the involved model elements as explained
in the next section. The DSL enables the specification of the
catalogue.

IV. METAMODEL AND DSL

This section discusses the HVT metamodel in detail and
explains the use of the Xtext language [21] to define the
grammar for the proposed domain-specific language HVT.

The Human Value Trigger (HVT) metamodel as shown in
Figure 3 defines the human values as well as the suggestions
provided in response to the detection (trigger) of a potential
human value issue in the analyzed domain model. It contains
the main classes HumanValue, Suggestion, and Trigger. The
HumanValue class refers to the information about the 58
human values, their definition, and respective categories ac-
cording to the Schwartz theory, e.g., for the Creativity human
value, Self-Direction is its category, and Able to create new
and original ideas is considered as the concise definition
explaining the value itself.

The Suggestion class contains the different triggers collected
based on past experiences and the suggested element that
could be added to prevent an impact on various human values
caused by the triggers. In other words, a suggestion groups
all the detected human value issues (triggers) that could be
addressed by a change to the domain model (i.e., the suggested
model element). Each Suggestion has one modelElement as
a suggested element that could be added in the analyzed
domain model. For example, in scenario (iv) discussed in the
motivating example in Section III, “timeYouWantToSpend” is
the suggested model element (an attribute for the User Class
in this case) to avoid a similar situation. The triggers of a
Suggestion are alternatives, i.e., each one could lead to the
addition of the suggested model element in the domain model.

The Trigger class is defined to capture various cases and
their significant impact on human values. Each Trigger has one
triggering element which corresponds to the ModelElement
which is being matched in the analyzed domain model. A
ModelElement correspond to different elements in the class
diagram, i.e., either a Class, Attribute, Enumeration, Literal,
AssociationClass, or AssociationEnd. For example, in scenario
(iv), the “User” class of the WhatsApp domain model is
considered as the triggering element which corresponds to the
Class subclass of ModelElement.

Each Trigger also contains multiple examples and the rea-
sons on how presence or absence of the triggering element
impacts different human values. Each Example refers to a
detailed explanation for the trigger. Here “People may get
addicted to WhatsApp, doing the same thing repeatedly which
may result in reduced (or no) interaction with other people” is
considered as the example for this scenario. Each Reason con-
tains the explanation and the positive and negative impacts on
the corresponding value if the element is absent in the analyzed
domain model. For the same example, “People spend more
time facing health issues like migraine problem” is referred
as a justification for the Reason and “Healthy” corresponds
to the name of the HumanValue impacted negatively when the
element is not in the analyzed domain model.

We decide to restrict ourselves to one triggeringElement
for a Trigger as well as one modelElement for a Suggestion
as the sample scenarios we investigated can be modelled
with this approach. By restricting ourselves to one triggering
element, we increase the chances of matches in the analyzed
domain model compared to more complex patterns that could
be matched. This increases the exposure of potential human
value issues to the modeller with the trade-off that more
false positives may be presented to the modeller. In the
case where we need multiple model elements for the same
Suggestion, a duplicate of the Suggestion could be created for
each additional required model element. In future work, the
multiplicity could be changed from 1 to 1-to-many.

Each ModelElement conforms to a proper model element in
the chosen domain modelling notation (i.e., the TouchCORE
Class Diagram Metamodel (CDM) [22] for our prototype).
This means that ModelElement could point directly to an
element in the CDM, instead of specifying different model
elements in the HVT metamodel. However, a complete class
diagram would be required if we were to point directly to a
CDM model element as a single CDM model element cannot
exist in isolation. Furthermore, there are many more features
defined for CDM model elements that are of limited use for
our purpose but would have to be specified. In our HVT meta-
model, we can focus on those elements that we actually need,
making that clearer and explicitly defined. For example, if we
want to express an AssociationEnd using the CDM metamodel,
we have to specify additional attributes like navigable and
ordered and additional classes like Association conforming
to the CDM definition of “AssociationEnd”. Furthermore, if
we were to add these additional features, we would have
to explicitly specify which elements are being matched and

Fig. 3. Human Value Trigger Metamodel

which ones are not being matched for the analyzed domain
model. Including only the required elements directly in HVT
provides a clear view of the exact pattern utilized for matching
and helps maintain only the information required for matching.

The HVT metamodel discussed in Figure 3 is equivalent
to the grammar definition specified with Xtext. This grammar
includes the metamodel and the concrete syntax of a domain-
specific language which is used by a modeller to produce
or read HVT models (i.e., catalogues) to describe potential
human value issues. We use this language as it helps the
modeller express the information in a natural and textual way.
Additionally, the editor generated by Xtext from the grammar
specification features auto-completion, syntax highlighting,
and syntactic validation which helps with the correctness of the
content. Listing 1 shows what scenario (iv) of the motivating
example discussed previously looks like as an HVT model.

The grammar specifies a HumanValueTriggerSystem which
contains first a list of HumanValues (two are shown in List-
ing 1 in Lines 1-2) and then a list of Suggestions (one shown
in Lines 5-11 with one suggested ModelElement (Line 5) and
one Trigger (Lines 6-11)). Several alternative triggers could
be specified. The specification of a human value starts with
the keyword “HumanValue” followed by the category which
is separated from the name of the human value using the “.”
as shown in Listing 1. This is followed by the description of
the human value.

The suggested model element (Line 5) first specifies the
kind of model element with the keyword ”Attribute”, ”As-
sociationEnd”, ”AssociationClass”, ”Class”, ”Enumeration”,
or ”Literal”. This is followed by additional information as
required for the kind of model element. E.g., the attribute’s
type (Time), class (User), and name (timeYouWantToSpend)
are specified for an Attribute in Line 5.

We use the keyword “Trigger” to represent a trigger in a
suggestion. Line 6 shows that the trigger specifies a pattern
to match which is “Class User”. Here, the User class will
be matched to suggest possible recommendations for the
analyzed domain model. If a match exists and the modeller
agrees with the suggested model element ”Attribute Time

’User’.timeYouWantToSpend”, then the attribute will be added
to the User class in the analyzed domain model.

1 HumanValue Universalism.BroadMindedOrTolerance
’Liberal in views and reactions’

2 HumanValue Universalism.SocialJustice ’Everyone
deserves equal economic, political, and
social rights and opportunities’

3 //Apart from the above mentioned values, there
are a total of 58 values defined according
to Schwartz’s taxonomy of human values (not
all shown for brevity)

4
5 Attribute Time ’User’.timeYouWantToSpend
6 Trigger Class User
7 Example ’People may get addicted to

WhatsApp, doing the same thing repeatedly
which may result in reduced (or no)
interaction with other people’

8 negIfAbsent Creativity because ’People
addicted to social media keep on doing the
same thing every day, which kills
creativity’

9 negIfAbsent Curious because ’People
addicted to chatting may not read up on
news or current topics or study for their
course’

10 negIfAbsent AVariedLife because ’People
addicted to WhatsApp are doing the same
thing over and over again’

11 //Apart from the above mentioned values and
reasons, there are a total of 16 values
identified that may be impacted (not all
shown for brevity)

Listing 1. Scenario (iv) as an HVT Model

The modeller bases their decision on one or more Examples
from past experience (one shown on Line 7) and on one or
more Reasons (three shown in Lines 8-10). A reason lists out
the impacted value and a respective explanation in the format
“negIfAbsent <name of HumanValue> because <explanation
of Reason>”. Here, “negIfAbsent” and “because” represent
the keywords to indicate the properties they define. Similarly,
“posIfAbsent” is used to represent the postive impact on values
if the model element does not exist in the analyzed domain
model. Capturing negative and positive impact allows for

trade-off analyses. Practitioners may utilize this language to
contribute more such suggestions including model elements,
triggers, examples, and reasons. The resolution of disagree-
ments and conflicts about the content of the catalogue is out
of scope and left for future work.

The human value trigger system proposed in this paper
compares every CDM element of the analyzed domain model
with the triggers collected from past experiences. For example,
assume that the scenarios detailed in Section III including the
one shown in more detail in Listing 1 were added to the cat-
alogue in the past and that now the WhatsApp domain model
is analyzed for potential human value issues. In that case, the
analyzed domain model contains the class “User”, which is
automatically matched by the HVTS with the trigger specified
in Listing 1 for the catalogue. For each matched trigger, its
examples and reasons for the impacted values are presented
to the modeller so that the modeller can better understand the
suggested element and decide whether the potential human
value issue is indeed one that needs to be addressed in the
context of the analyzed domain model. If it is, the modeller
selects the suggestion and the HVTS consequently integrates
the suggested model element into the analyzed domain model.
To improve the automated matching process, we support the
semantic detection of human value issues based on synonyms.
The next section provides an analysis of synonym services.

V. ANALYSIS OF SYNONYM SERVICES

This section provides a detailed explanation of the anal-
ysis performed on eight synonym services in Section V-A
and the analysis performed on their various combinations in
Section V-B to determine the best combination for the HVTS.
Without a synonym service, the HVTS uses a syntactic, name-
based approach to match a model element in the analyzed do-
main model with a triggering model element in the catalogue.
While a matching approach based on Levenshtein distance [23]
catches small typos, it cannot match different words with the
same meaning. With a synonym service, this matching process
also considers synonyms for the names of model elements.

A. Analysis of Single Synonym Services

Let us consider an example domain model where the class
“User” is referred as “EndUser”. When the proposed system
is used, all the triggers matched for class User must be
recommended for this analyzed domain model as User and
EndUser are synonyms to each other. To accomplish this task,
we have analyzed eight synonym services and various combi-
nations of them to extract words with similar meaning. These
synonym services include dictionaries and thesauri together
with NLP-based and AI-based services. Table I depicts the
list of different synonym services and links to the information
to use various APIs to access these synonym services. All
synonym services used in the analysis have a defined list of
synonyms except for GloVe and ChatGPT. GloVe contains
vector representation for words and compares the cosine
similarity between the words to find the similar words. The
cosine similarity measures the angle between two vectors.

TABLE I
LIST OF DIFFERENT SYNONYM SERVICES AND

INFORMATION TO USE VARIOUS APIS

Synonym
Service

Link used to Access the Synonym
Service

Part of API

Wordnet https://projects.csail.mit.edu/jwi/
(User’s Manual-
edu.mit.jwi 2.4.0 manual.pdf)

Dictionary
&
Thesaurus

GloVe https://medium.com/analytics-vidhya/
basics-of-using-pre-trained-glove-
vectors-in-python-d38905f356db
https://nlp.stanford.edu/projects/glove/

Natural
Language
Processing

Word As-
sociation

https://rapidapi.com/twinword/api/
word-associations/

Dictionary

Word Dic-
tionary

https://rapidapi.com/twinword/api/
word-dictionary/

Dictionary

Wordnik https://developer.wordnik.com/ Dictionary
Oxford https://developer.oxforddictionaries.

com/documentation
Thesaurus

Webster https://dictionaryapi.com/ Thesaurus
ChatGPT https://openai.com/blog/chatgpt AI Chatbot

Given two word vectors, the cosine similarity score varies from
-1 to 1, with a score of 1 indicating that the two words are
identical, and a score of -1 indicating that they are completely
dissimilar. The higher the similarity score between vectors,
the more they are semantically similar [24] [25]. ChatGPT
is a chatbot based on a large language model that uses deep
neural networks to estimate the probability of the next word
given a sequence of words. Note that some other existing
synonym services such as dictionary.com and thesaurus.com
are not used in this paper as they are not accessible by an API.

Based on our motivating examples (WhatsApp, Airline
Reservation System [14]), we compile a list of words to
compare the results from different synonym services. The
words must be taken from an example domain model, because
the appropriateness of a word suggested as a synonym depends
on the context in which the word is used. Hence, we are
evaluating the synonym services for each word in the context
of its domain. The words used are price, person, user, airline,
delivered, status, text, message, active, privacy, story, and
phoneNumber. The list of words includes nouns like price,
person, user, airline, verbs like delivered, and adjectives like
active. We also include the word “phoneNumber” as the
name of a model element is often a combination of more
than one word. For such words, various synonym service
APIs require different combinations such as “phone number”,
“phone-number”, etc. to return the synonyms.

For each synonym service, we investigate the results based
on the number of suitable words returned as a synonym. Each
word is categorized as a suitable synonym of the given word
based on the interpretation done by the first author of this
paper. The second author verified the interpretation, and any
disagreements were discussed and resolved. After labeling the
outcomes for different words, we formulate two criteria, to
consider the best of these various synonym services:

Criterion 1: The average of the percentages of all suitable
words (Suitable words % = (Suitable words / (Suitable words
+ Not suitable words) * 100) for those words where at least

one synonym is found. This is the precision of the result. We
cannot calculate the recall of the result because the number of
false negatives is not known in the absence of a ground truth.

Criterion 2: The average percentage of the count of words
where at least one synonym is found (Count % = Count words
with synonym found / Count all words * 100).

For example, for the word “price” in Wordnet, the synonyms
“damage”, “cost”, “price”, “terms”, “monetary value”, and
“toll” are found. Out of these, “cost”, “price”,“monetary
value”, and “toll” are counted as suitable while “dam-
age”, and “term” are counted as not suitable. Similarly, for
“user” we get “exploiter” from the synonym service which
is considered as not suitable for our analysis. For words
such as “airline”, “delivered”, and “phone number”, there
are no results returned from this synonym service. Table II
shows the results for the given list of words for Wordnet.
Here, the percentage of suitable words found is calculated
based on the number of suitable words found divided by
the total number of words found for the word. As for the
word “price”, the percentage is 67% and for “user” the
percentage is 0% whereas for “airline”, “delivered”, and
“phone number” the percentage is not considered. Then,
we evaluated the values for Criterion 1 and Criterion 2
which are 32% (i.e., (67+60+0+50+0+25+0+50+40)/9) and
75% (i.e., 9/12*100), respectively. Further, we consider the
range of suitable words by taking into account the lowest
and the highest number of suitable words found which is
0-6 (“airline” − 0, “story” − 6). Lastly, we determined
the average of suitable words by considering the number of
suitable words found for all words which is 1.5 in this case
(i.e., (4+3+0+0+0+1+1+1+0+2+6+0)/12).

TABLE II
DETAILED RESULTS FOR WORDNET

Word Suitable
Words (SW)

Not Suitable
Words (NSW)

#
SW

#
NSW

%
SW

price cost, price,
monetary
value, toll

damage, terms 4 2 67%

person individual,
someone,
somebody

soul, mortal 3 2 60%

user −− exploiter 0 1 0%
airline −− −− 0 0 −−
delivered −− −− 0 0 −−
status condition position 1 1 50%
text textual matter −− 1 0 0%
message message substance,

subject matter,
content

1 3 25%

active −− active agent 0 1 0%
privacy secrecy,

privateness
seclusion, con-
cealment

2 2 50%

story narrative,
write up, tale,
narration,
story,
chronicle

level,
taradiddle,
history, storey,
news report,
report, floor,
account, fib

6 9 40%

phone
number

−− −− 0 0 −−

Table III shows the results for the given list of words.
As shown in the table, we obtain the maximum of 32% for
Wordnet and Word Dictionary under Criterion 1, but Word
Dictionary receives 100% under Criterion 2. For Word Asso-
ciation, we receive results for all words, but the percentage
for Criterion 1 is lower compared to Wordnet and Word
Dictionary. We obtain a high range for suitable words for
Oxford with an average of 3.50. Despite these results, the
values for Criterion 1 and 2 are lower when compared to Word
Dictionary, because many false positives are also reported
by Oxford. This is not ideal for an automatic approach we
would like to integrate into HVTS (i.e., the matching process
is automatic and should not yield many suggestions that are
false positives for the analyzed domain model). For Glove,
we receive an average of 2.58 for good words but there is a
decrease of 4% and 8% for Criterion 1 and Criterion 2, respec-
tively, when compared with Word Dictionary. Though, there
is a decrease of 0.83 in average of suitable words for Word
Dictionary compared to Glove, Word Dictionary performs
better overall for an automatic approach. To conclude, the
analysis above shows that amongst the considered synonym
services, Word Dictionary performs best overall.

However, to find the optimal synonym service for syn-
onyms, we ideally want to choose the one that meets both
selection criteria with a score of 100%. Another option would
be to allow the modeller (the one who creates the catalogue,
not the one who uses it to analyze a domain model) to specify
the synonyms explicitly as done by Singh et al. [26]. In that
case, the synonyms are not dynamically retrieved during the
matching process but rather specified at catalogue creation
time. The matching process would then only access the list
of synonyms in the catalogue. To implement this manual
approach of providing synonyms, Oxford would be a good
option because we could just present the long list from Oxford
(range of 0-12 and average of 3.5) and the modeller could
choose the appropriate synonyms. However, Oxford is not a
good choice for our automatic approach.

Additionally, we investigate the results from ChatGPT. As
shown in Table III, ChatGPT performs well and the results
look promising. But the results are not guaranteed, as the
responses are generated by a large language model-powered

TABLE III
RESULTS FOR ALL SYNONYM SERVICES

Synonym
Service

Criterion
1

Criterion
2

Range of
Suitable
Words

Average of
Suitable
Words

Wordnet 32% 75% 0-6 1.50
Glove 28% 92% 0-5 2.58
Word As-
sociation

8% 100% 0-4 2.41

Word Dic-
tionary

32% 100% 0-3 1.75

Wordnik 8% 83% 0-3 0.66
Oxford 21% 67% 0-12 3.50
Webster 20% 83% 0-10 2.33
ChatGPT 31% 100% 1-13 5.75

chatbot that is known for varying its output. To support this
assertion, we further explore ChatGPT to see the variance
in the response by posing the same question five times in
different runs (i.e., what are the synonyms for word “price”?).
After comparing the results, we noticed a significant difference
between the responses ranging from 53% to 90% with an
average of 76%. This demonstrates that in some cases, the
quality of responses may be very good and highly relevant,
while in other cases, it may be mediocre. Therefore, due to the
significant variance in the results from one run to another we
exclude ChatGPT from further analysis. However, ChatGPT
is a viable option with a range of 1-13 and an average of
5.75 for an interactive, manual synonym approach during
catalogue creation and could even outperform Oxford in that
case. One could also experiment with providing additional
context together with the question to receive more accurate
and relevant responses from ChatGPT.

To further investigate the synonym services with the aim
to improve the outcomes for both criteria, we aggregate
the results from different synonym services by selecting the
common values for the synonym services under discussion.
For example, the results for the word “price” for Wordnet
are “damage”, “cost”, “price”, “terms”, “monetary value”,
and “toll” and for Word Dictionary “discount”, “charge”,
“cost”, “toll”, and “ticket”. Consequently, the words “cost”
and “toll” are considered as the result for the combination
of these synonym services (Wordnet + Word Dictionary). The
criterion used for the analysis of combinations of synonym
services is explained in the next section.

B. Analysis of Combinations of Synonym Services

The selection criteria to combine the synonym services is
based on the values obtained for Criterion 1. According to
Table III, Criterion 1 is more than 10% for five synonym
services namely Wordnet, GloVe, Word Dictionary, Webster,
and Oxford. Based on this, we decide to keep only these for
further analysis as indicated in Table IV. We investigate each
pair-wise combination of these five synonym services.

As indicated in the last two rows of Table IV, the results
for Criterion 1 and Criterion 2 do not surpass the results of

TABLE IV
RESULTS FOR THE PAIR-WISE COMBINATION OF SYNONYM SERVICES

Synonym
Service

Criterion
1

Criterion
2

Range of
Suitable
Words

Average of
Suitable
Words

O + WD 67% 50% 0-3 0.75
O + WE 37% 67% 0-7 1.75
O + WN 38% 42% 0-2 0.50
O + G 40% 42% 0-2 0.33
WD + WE 89% 42% 0-2 0.66
WD + WN 83% 42% 0-3 0.75
WD + G 50% 50% 0-2 0.33
WE + WN 26% 42% 0-4 0.50
WE + G 75% 33% 0-2 0.33
WN + G 89% 25% 0-2 0.33
G...GloVe, O...Oxford,
WD...Word Dictionary, WE...Webster, WN...Wordnet

Word Dictionary + Webster. Therefore, we disregard these two
combinations. The remaining combinations can be grouped
into three groups based on Criterion 2: one row with 67%,
two with 50%, and five with 42%. For each of those groups,
we then choose the combination with the highest score in
Criterion 1, as the best combination from that group, i.e., Word
Dictionary + Webster for the combination of synonym services
with 42% for Criterion 2, Oxford + Word Dictionary for the
combinations with 50% as Criterion 2, and Oxford + Webster
for the combinations with 67% as Criterion 2.

When comparing the results from Word Dictionary + Web-
ster with Oxford + Word Dictionary, Criterion 1 in the first
combination is 22% more than the second combination while
Criterion 2 in the first combination is 8% less than the second
combination with a similar range and average of suitable
words. Therefore, we move forward with the first combination
(Word Dictionary + Webster).

When we compare the results from Word Dictionary +
Webster with Oxford + Webster, it is very clear from Table IV
that Criterion 1 is 52% more for the first combination. Con-
sequently, Word Dictionary + Webster is the best choice from
Table IV, even though Criterion 2 of Oxford + Webster is 25%
more than Word Dictionary + Webster. However, a high result
for Criterion 1 is more important for our desired automated
approach as the number of incorrect synonyms is minimized.

We observe a similar tradeoff between the best choices from
Table III and Table IV. Criterion 2 and the average of suitable
words for the combined synonym service (Word Dictionary +
Webster) has decreased by 58% and 1.09, respectively, when
compared with the results from Word Dictionary. Now, in
contrast to Criterion 2, Criterion 1 is 57% more in case of
the combined synonym services than Word Dictionary alone.
Although the decline in Criterion 1 causes us to miss some
suitable synonyms, there is a significant increase in the quality
of words we are receiving as a synonym. Based on this
conclusion, we finalize the combined synonym services (Word
Dictionary + Webster) as the synonym service for HVTS.

To assure us that a combination with three synonym services
does not yield a better result, we investigate the results of all
combinations of three synonym services. The results for the
combinations indicate that while it is possible for Criterion 1
to reach 100%, it comes at the expense of Criterion 2 which
is now deemed to be too low (i.e., 17%) for the results to be
useful for our proposed HVTS.

VI. CONCLUSION AND FUTURE WORK

Human values play a significant role in decision making in
users, practitioners, and organizations. Users expect software
that considers human values. The Human Value Trigger Sys-
tem (HVTS) aims to reduce the ignorance of human values
during domain modelling by guiding software practitioners.
The HVTS incorporates human values by providing sugges-
tions for a domain model based on matches against past
experiences with human value issues. With the proposed HVT
(a domain-specific language called Human Value Trigger),
different examples for human value issues together with the

model elements for which the issues manifest themselves are
captured in a catalogue along with a detailed scenario that
explains how the presence or absence of the model element
impacts the values.

In this paper, we specify the domain-specific language HVT
that captures examples from past experiences. We explain
the language and the metamodel for HVT in greater detail.
We investigate the domain model for the WhatsApp System
considering all the values in Schwartz’s taxonomy to motivate
our approach to include human values-based elements in our
domain modelling. Furthermore, an analysis of eight synonym
services including dictionaries and thesauri as well as NLP-
based and AI-based services is performed to find the optimal
synonym service or combination of synonym services to use
for the automated matching process in HVTS.

In the future, the matching algorithm of HVTS could be
improved so that it works for patterns of multiple elements
as triggers and suggestions instead of single elements. Pattern
matching and model querying technologies such as OCL could
be used for that purpose. Additional examples from past
experiences could be collected using the grammar specified by
HVT over time. The individual impacts of triggers could be
translated and combined into a goal model to help the modeller
assess more holistically the applicability of the suggestions for
the analyzed domain model. Moreover, a user study could be
conducted to assess the usefulness of the proposed system,
possibly comparing HVTS with catalogue-based approaches
for non-functional requirements. In addition to domain models,
potential human value issues could be collected for other key
RE modelling techniques such as goal models and workflow
models to address human values throughout the software
development process.

REFERENCES

[1] J. Whittle, M. A. Ferrario, W. Simm, and W. Hussain, “A case for human
values in software engineering,” IEEE Software, vol. 38, no. 1, pp. 106–
113, 2021.

[2] C. Cadwalladr and E. Graham-Harrison, “Revealed: 50 million
facebook profiles harvested for cambridge analytica in major data
breach,” 2018. [Online]. Available: https://www.theguardian.com/news/
2018/mar/17/cambridge-analytica-facebook-influence-us-election

[3] W. Hussain, D. Mougouei, and J. Whittle, “Integrating social values into
software design patterns,” in 2018 IEEE/ACM International Workshop
on Software Fairness (FairWare), 2018, pp. 8–14.

[4] BBC News, “Instagram vows to remove all graphic self-harm images
from site,” 2019. [Online]. Available: https://www.bbc.com/news/uk-
47160460

[5] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing software
for discrimination,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
498–510. [Online]. Available: https://doi.org/10.1145/3106237.3106277

[6] S. H. Schwartz, An Overview of the Schwartz Theory of Basic Values.
Online Readings in Psychology and Culture, 2(1), 2012. [Online].
Available: https://doi.org/10.9707/2307-0919.1116

[7] H. Perera, G. Mussbacher, W. Hussain, R. Ara Shams, A. Nurwidyan-
toro, and J. Whittle, “Continual human value analysis in software devel-
opment: A goal model based approach,” in 2020 IEEE 28th International
Requirements Engineering Conference (RE), 2020, pp. 192–203.

[8] T. C. Lethbridge and R. Laganière, Object-oriented software engineer-
ing: practical software development using uml and java. 2nd edition.
McGraw Hill / Europe, Middle East and Africa, 2004.

[9] Object Management Group, “OMG® Unified Modeling Language®
(OMG UML®),” Dec 2017. [Online]. Available: https://www.omg.org/
spec/UML/2.5.1/PDF

[10] N. S. B. Sani, “Lab 3: Introduction to domain modeling and
class diagram,” 2009-2010. [Online]. Available: https://norsamsiah.files.
wordpress.com/2010/01/lab-003-domain-modeling1.pdf

[11] D. Mougouei, H. Perera, W. Hussain, R. Shams, and J. Whittle,
“Operationalizing human values in software: A research roadmap,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 780–784. [Online].
Available: https://doi.org/10.1145/3236024.3264843

[12] H. Perera, W. Hussain, D. Mougouei, R. A. Shams, A. Nurwidyan-
toro, and J. Whittle, “Towards integrating human values into software:
Mapping principles and rights of gdpr to values,” in 2019 IEEE 27th
International Requirements Engineering Conference (RE), 2019, pp.
404–409.

[13] J. Whittle, “Is your software valueless?” IEEE Software, vol. 36, no. 3,
pp. 112–115, 2019.

[14] G. Mussbacher, W. Hussain, and J. Whittle, “Is there a need to address
human values in domain modelling?” in 2020 IEEE Tenth International
Model-Driven Requirements Engineering (MoDRE), 2020, pp. 73–77.

[15] H. Perera, W. Hussain, J. Whittle, A. Nurwidyantoro, D. Mougouei,
R. A. Shams, and G. Oliver, “A study on the prevalence of
human values in software engineering publications, 2015 – 2018,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 409–420. [Online].
Available: https://doi.org/10.1145/3377811.3380393

[16] R. A. Shams, W. Hussain, G. Oliver, A. Nurwidyantoro, H. Perera, and
J. Whittle, “Society-oriented applications development: Investigating
users’ values from bangladeshi agriculture mobile applications,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Society, ser. ICSE-SEIS
’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 53–62. [Online]. Available: https://doi.org/10.1145/3377815.3381382

[17] W. Hussain, H. Perera, J. Whittle, A. Nurwidyantoro, R. Hoda, R. A.
Shams, and G. Oliver, “Human values in software engineering: Con-
trasting case studies of practice,” IEEE Transactions on Software Engi-
neering, vol. 48, no. 5, pp. 1818–1833, 2022.

[18] A. Nurwidyantoro, M. Shahin, M. Chaudron, W. Hussain, H. Perera,
R. A. Shams, and J. Whittle, “Towards a human values dashboard
for software development: An exploratory study,” in Proceedings of
the 15th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), ser. ESEM ’21. New York,
NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3475716.3475770

[19] W. Hussain, M. Shahin, R. Hoda, J. Whittle, H. Perera, A. Nurwidyan-
toro, R. A. Shams, and G. Oliver, “How can human values be addressed
in agile methods? a case study on safe,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 5158–5175, 2022.

[20] A. Nurwidyantoro, M. Shahin, M. R. Chaudron, W. Hussain, R. Shams,
H. Perera, G. Oliver, and J. Whittle, “Human values in software
development artefacts: A case study on issue discussions in three
android applications,” Information and Software Technology, vol. 141,
p. 106731, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584921001828

[21] Xtext, “Website.” [Online]. Available: https://www.eclipse.org/Xtext/
[22] TouchCORE, “Website.” [Online]. Available: http://touchcore.cs.mcgill.

ca/
[23] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8. Soviet
Union, 1966, pp. 707–710.

[24] GloVe: Global Vectors for Word Representation, “Website.” [Online].
Available: https://nlp.stanford.edu/projects/glove/

[25] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[26] P. Singh, “Domain modeling mistake detection system,” McGill
University, Canada, 2022. [Online]. Available: https://escholarship.
mcgill.ca/concern/theses/5x21tm741

