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Abstract—Goal modeling helps analysts understand the needs
and motivations of stakeholders. Recent work has investigated
considering how these intentions change over time. In this paper,
we investigate the problem of specifying and reasoning about
goal models when some stakeholders and their intentions are
not present for the entirety of a timeline under consideration.
With inspiration from software product lines, we implement
presence conditions to specify periods of time when an actor
or intention is included/excluded. By incorporating presence
conditions, goal models can more accurately represent and
visualize real-world conditions and correctly propagate model
information. We implement our approach in BloomingLeaf and
evaluate it using a concrete example.

I. INTRODUCTION & MOTIVATION

Goal modeling languages have been used in the early-
phases of projects to help stakeholders make decisions be-
tween alternative designs [1]. These models may then be
connected downstream with other model-driven engineering
approaches [2]. More recently, researchers have investigated
how to analyze goal models over time [3], [4]. To validate
the applicability of one time-based analysis framework, called
Evolving Intentions, Grubb and Chechik investigated a road
construction project over five decades [5]. As part of this
work, they explored merging goal models over time when
not all actors are present across the entire timeline. Grubb
and Chechik described the need for representing the presence
of actors and intentions in the time-based simulation of goal
models; yet, they did not provide any mechanism to capture,
represent, or conduct analysis in accounting for these presence
conditions. We continue this line of inquiry by investigating
presence conditions in time-based goal models.

Generally speaking, a presence condition specifies whether
a given model element is present in a model fragment or
slice. In model-driven engineering, presence conditions have
been used for specifying software product lines [6] and
uncertainty [7]. These conditions are generally specified via
boolean expressions [6]. TimedURN, another time-based goal
modeling approach, specifies presence conditions over model
elements through Deactivation Changes, which specify a time
were an element either becomes active or de-active [3], [8].
Our work differs from these approaches because we specify
temporal ranges, rather than boolean conditions.
Illustrative Example: Predictive App (App). Consider a
generic application (App), circa 2020. Fig. 1(a) illustrates a
fragment of the model, created by the analytics team, who

(a) Year 2020, t0 = 0

(b) Year 2023, tc = 36

(c) Year 2025, te = 60

Fig. 1: Three model fragments of the Predictive App example.

has the goal to Have A Prediction Feature in their application.
In the initial model, this goal is decomposed into two possi-
bilities: Use Similarity Metrics for predictions and Create Data
Model to make predictions from historic user data. Initially,
they compare the trade-offs of these possible designs, wanting
to find the best approach to Have a Prediction Feature, while
fulfilling Privacy and Ease of Use. Yet, they want to be open
to future possibilities. Fig. 1(b) illustrates another fragment,
where the team explores future options (expected in 2023) to
Use External AI Models. In Fig. 1(b), a new actor called AI Corp
has the goal to Have Large Language Model, which the App
can use. Yet, given this controversial technology, governments
may regulate the use of AI for both the public and private
sector. The third model fragment, see Fig. 1(c) illustrates the
Regulator actor blocking the use of AI in 2025.

The analytics team wants to simulate possible evolutions
of Have A Prediction Feature, given the dependencies and
implications of the AI Corp and Regulator actors. Prior work
enables analysts to merge these model fragments and show
them in the same model [9]. In the resulting simulations, ab-
sentee actors are shown with meaningless fulfillment labels for
their intentions, which confuses users and leads to erroneous
decisions. Thus, we present a novel technique to capture and
visualize the presence and absence of actors and intentions,
which improves the versatility and interpretability of the time-
based simulations in the Evolving Intentions framework.
Contributions. In this MoDRE workshop paper, we incorpo-
rate presence conditions into the Evolving Intentions frame-
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Fig. 2: App model with all fragments from Fig. 1 combined.

work. We enable the automatic analysis and simulation of
goal models where some actors and intentions are absent for
a portion of the model timeline.
Organization. Section II uses the App example to give an
overview of the Evolving Intentions framework. In Sect. III,
we describe our specification and implementation of presence
conditions. Section IV discusses our evaluation and ongoing
work. Section V compares our approach to related work. We
conclude in Sect. VI.

II. BACKGROUND

In the Evolving Intentions framework, an evolving goal
model is a tuple M = 〈A,G,R,EF ,MC,maxTime〉, where
A is a set of actors, G is a set of intentions (e.g., goals, tasks,
soft-goals), R is a set of relationships over intentions, EF is a
set of evolving functions, MC is a set of constraints over time
points in the model, and maxTime is the maximum absolute
time over which any function or constraint is defined by the
user [4].

Fig. 2 shows the model after the three model fragments from
Fig. 1 have been merged [9]. Fig. 3 provides the specification
of the model in Fig. 2 according to the definition of an evolving
goal model M . For example, App’s actor boundary in Fig. 2
illustrates the same eight intentions listed for App in the set A
of MApp (see Fig. 3). Each intention (e.g., Privacy) is listed
under the set G with the associated type (e.g., soft-goal for
Privacy). Similarly, all relationship shown in Fig. 2 are listed
as the specification of R (see Fig. 3). For example, the link
between Build Model and Ease of Use in Fig. 2 is written as
Build Model

-−−−→ Ease of Use in the specification.
Within the framework, the fulfillment of intentions are

evaluated using five evidence pairs: Satisfied (F,⊥), Partially
Satisfied (P,⊥), Partially Denied (⊥,P), Denied (⊥,F), and
None, (⊥,⊥). Additionally, four conflicting evidence pairs
may result from propagation: (F,F), (F,P), (P,F), and (P,P).
These valuations can be used to specify how the fulfillment of
each intention may change over time using step-wise function
specified within EF . For example, the EF set in Fig. 3

specifies that Have a Prediction Feature will behave randomly
from t0 = 0 to thpf using the STOCHASTIC function, then will
be Satisfied (F,⊥) from thpf to tmaxTime as specified by the
CONSTANT function. See [4] for a complete overview.

Once the time-based elements of a model are specified, we
can generate a simulation path of how the model could evolve
over time. Thus, the definition of M also includes timing
information. Simulation paths are generated from a start time
t0 = 0 until a user specified maximum time maxTime, where
each increment of time (i.e., a tick) is specified by the user.
In our illustrative example, the modeler created the model for
January 2020 and wants to simulate it over seven years were
each tick is a month. Thus, the maxTime of MApp (see Fig. 3)
is 84. We also specify time points with which we intent to
sample the evaluation of intentions in the model. We include
January of each year in the MC set by specifying ta–tf (see
Fig. 3).

III. RESULTS

In this section, we introduce how we specify presence
conditions within the Evolving Intentions framework and then
we describe our implementation in BloomingLeaf.

A. Specification of Presence Conditions

As described in Sect. I and Sect. III-B, we allow front-end
users to identify presence conditions as the period of inclusion
for an element over the timeline. However, to enable back-
wards compatibility of prior models, we store this information
as the period of exclusion. We extend the definition of an actor
and an intention (see Sect. II) to allow for the specification of
an absence of an element.
Actor Definition. Let an actor a ∈ A be the tu-
ple 〈name, type, intention-set, exclusion-set (optional)〉, where
exclusion-set is a set of closed intervals for which the actor
is not present. For example, Fig. 1 (b) illustrates the AI Corp
to be present in the model starting at tc = 36. Thus,
we update the specification of the AI Corp actor in Fig. 3
as 〈AI Corp, actor, {Have Large Language Model}, {[0, 35]}〉.
Similarly, for Regulator (see Fig. 1 (c)), which appears in the
timeline in 2025 (i.e., te = 60), we update the definition as
〈Regulator, actor, {Block AI Use}, {[0, 59]}〉.
Intention Definition. Let an intention g ∈ G be the tuple
〈name, type, exclusion-set (optional)〉, where exclusion-set is a
set of closed intervals for which the intention is not present.
For example, the Use External AI Model is only present in
Fig. 1 (b) and Fig. 1 (c), but is absent from Fig. 1 (a); thus, Use
External AI Model should only be present in the timeline at tc =
36. We update the specification of the Use External AI Model
intention in Fig. 3 as 〈Use External AI Model, task, {[0, 35]}〉.
Inclusion/Exclusion Periods. We specify presence conditions
as the exclusion period rather than the inclusion period to
allow for backwards compatibility of prior models, analysis,
and tooling. We acknowledge this deviation from the literature
(see Sect. V). In the illustrative example, we do not need to
modify the definition of the App actor or the intentions shown
in Fig. 1 (a) as they are present throughout the entire timeline.
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The goal model MApp is 〈A,G,R,EF ,MC,maxTime〉 where,
A = { 〈App, actor, {Have a Prediction Feature,Use Similarity Metrics,Create Own Data Model,Collect-Retain User Data,

Build Model,Privacy,Ease of Use,Use External AI Model}〉, 〈AI Corp, actor, {Have Large Language Model}〉,
〈Regulator, actor, {Block AI Use}〉 },

G = { 〈Have a Prediction Feature, goal〉, 〈Use Similarity Metrics, task〉, 〈Create Own Data Model, task〉,
〈Collect-Retain User Data, task〉, 〈Build Model, task〉, 〈Privacy, soft-goal〉, 〈Ease of Use, soft-goal〉,
〈Use External AI Model, task〉, 〈Have Large Language Model, goal〉, 〈Block AI Use, task〉 },

R = { (Use Similarity Metrics,Create Own Data Model,Use External AI Model)
or−−−−→ Have a Prediction Feature,

(Collect-Retain User Data,Build Model)
and−−−−→ Create Own Data Model, Use Similarity Metrics

+−−−−→ Privacy,
Collect-Retain User Data

--−−−−→ Privacy, Build Model
-−−−−→ Ease of Use, Use External AI Model

++−−−−→ Ease of Use,
Use External AI Model

-−−−−→ Privacy, Block AI Use
--−−−−→ Use External AI Model,

Have Large Language Model
++−−−−→ Use External AI Model },

EF = { 〈Have a Prediction Feature, {〈STOCHASTIC, (⊥,⊥), t0, thpf〉, 〈CONSTANT, (F,⊥), thpf, tmaxTime〉}〉 },
MC = { ta = 12, tb = 24, tc = 36, td = 48, te = 60, tf = 72 }, and

maxTime = 84.

Fig. 3: Specification of the App model shown in Fig. 2.

The exclusion set can contain more than one time period.
For example, to specify that an actor will be present in the
middle of the timeline, say from 24 to 48, then the exclusion
set would be {[0, 23], [49, 84]}. Additionally, if an intention
belongs to an actor (i.e., is listed in the actor’s intention-set),
then the actor’s exclusion period applies to that intention; nev-
ertheless, the intention can have a more restrictive exclusion
period. For example, we specified the exclusion set for the
Regulator actor as [0, 59]. This implies that Block AI Use could
have an exclusion set of [0, 62], meaning the Regulator actor
is present in the timeline before Block AI Use appears.
Analysis with Presence Conditions. Once presence con-
ditions have been added into model elements, they can be
incorporated into analysis. The Evolving Intentions framework
allows for path-based simulations over time, where at each
time point in the path the model is evaluated (i.e., each
intention is assigned an evidence pair) given the evolving
functions in EF and propagation of values across the links
in the model. When an intention is not present (i.e., during
an exclusion period), the intention is excluded from analysis
and all links connected to the intention are excluded. When
an actor is excluded, all intentions within the actor boundary
and their associated links are excluded.

Generally, decomposition links (i.e., and/or) have more
than one source intention. For example, Create Own Data
Model in Fig. 2 has two source intentions. Suppose Build Model
had a presence condition and was excluded from analysis, then
the only source intention would be Collect-Retain User Data.
In this case the decomposition would effectively propagate as
a ++ link (see [4] for further details on propagation).

B. Visualizations and Tooling
We implemented presence conditions as part of

BloomingLeaf, a goal modeling tool that implements
the Evolving Intentions framework (see Release 2.6 at
https://github.com/amgrubb/BloomingLeaf/releases/tag/v2.6).
When creating a model, users can specify presence conditions
using the actor and intention panels.

Actor Panel. Fig. 4(a) shows BloomingLeaf with the App on
the center canvas. Since the Regulator actor is selected, the
actor panel appears on the right-hand side. We appended this
panel to allow users to specify when the actor is present over
the timeline. Recall that maxTime for the App model is 84. In
Fig. 4(a), the actor slider has been updated to select 60− 84,
showing when the Regulator is present. As already discussed in
Sect. III-A, although the user selects when the actor is present,
we store when the actor is excluded.

Intention Panel. Fig. 4(b) shows the intention panel, when
Use External AI Model is selected on the center canvas. Again,
we allow users to specify when the intention is present over
the timeline. In this case, Use External AI Model is present
from 60 to 84 (see Fig. 4(b)).

Model-level View. By opting to store presence conditions in
the actor and intention panels, users may have trouble keeping
track of each assignment or may be confused why the range
for an intention is more restrictive than zero to maxTime. To
increase visibility of presence conditions, we extended the
Assignments List pop-up to include presence conditions, which
can be accessed by clicking View Assignments List in the top
toolbar of BloomingLeaf (see Fig. 4(a) for toolbar icon). The
updated assignments window shown in Fig. 5 has the presence
conditions for the App model listed. We list all actors, as well
as any intentions with ranges that deviate from their actor.

Simulation. Finally, we updated the path simulation viewer
in BloomingLeaf to show or hide elements based on their
presence conditions. Recall, at each time point in a simulation,
evidence pairs are propagated to all intentions in the model
based on the evolving functions and evaluation labels assigned
by the user. For example, in the App example, at ta = 12 and
tb = 24, the model shown in the simulation is the same as
what appears in Fig. 1(a) with evidence pair assignments for
each intention. While at te = 60 and tf = 72, the Fig. 2 model
is shown with evidence pair assignments. We omit images of
this simulation for space considerations.
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(a) BloomingLeaf showing App model on the center canvas. Since the Regulator intention is selected,
the Actor panel (with presence conditions) appears on the right.

(b) Intention panel when Use
External AI Model selected.

Fig. 4: Screenshots of BloomingLeaf showing our presence conditions extensions to the Actor and Intention Panels.

Fig. 5: Assignments window showing maxTime, absolute time
points and presence conditions for the App example.

IV. EVALUATION & ONGOING WORK

Next, we describe our initial evaluation and ongoing work.
Evaluation. As described in Sect. III, we implemented pres-
ence conditions in the front-end of BloomingLeaf. Using the
App example, we demonstrated the feasibility of analysts using
BloomingLeaf to specify and simulate a model with presence
conditions. As an initial test of the scalability of our implemen-
tation, we return to the road construction project introduced in
Sect. I. To visualize presence conditions, Grubb and Chechik
drew bubbles over fragments of the full model of the road
project [5]. We found it easy and fast to add the presence

conditions to model elements. Our approach is scalable for
this large model (>100 intentions), which we demonstrate
with a video online at https://doi.org/10.35482/csc.004.2023.
We need to complete further validation with large models to
confirm scalability. Upon reflection, our implementation can
be improved by allowing users to select and apply a single
presence condition to a collection of intentions.
Ongoing Work. With the ability to visualize presence condi-
tions in BloomingLeaf, we can improve the backend analysis
to take this information into account. Recently, Hablutzel et
al. [9] created a semi-automatic algorithm for the manual
merge presented by Grubb and Chechik [5]. We aim to extend
this merge algorithm, which is implemented in BloomingLeaf,
to accommodate presence conditions in the source models to
be merged. Doing so involves resolving conflicting informa-
tion about the presence of actors and intentions.

Additionally, we explore how users interpret and reason
about goal model simulations. Using our tooling for presence
conditions, we allow users to create a model slice by hiding
actors. The actor panel in Fig. 4(a) shows a Hide Actor button
that when clicked the actor disappears from the modeling
canvas. We envision a similar interface for the analysis view,
allowing us to study how users explore large models.

V. RELATED WORK

Presence conditions have been extensively studied in the
context of model-driven engineering (MDE) for software
product lines (i.e., variability aware systems). Czarnecki and
Antkiewicz contributed presence conditions as annotations
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over model elements to represent variability and evaluate a
particular feature configuration [6]. They represented presence
conditions as boolean formulas in disjunctive normal form
and XPath expressions. In subsequent work, Czarnecki and
Pietroszek represented valid configurations of a software prod-
uct line using presence conditions expressed over features as
propositional variables [10].

Based on the feature-based model templates proposed by
Czarnecki and Antkiewicz, Voelter and Visser demonstrated
the application of domain specific languages as a mapping
between feature models and code, within an MDE frame-
work [11]. During the mapping, a model transformation is
performed to remove program elements whose presence con-
ditions evaluate to false based on the current feature config-
uration. See Jézéquel for a survey of variability modeling,
including presence conditions [12].

More recently, work has focused on analyzing and sim-
plifying presence conditions. Von Rhein et al. [13] observed
that presence conditions can often contain redundant infor-
mation and investigated approaches to simplifying formulaic
representations. Finally, Hentze et al. used presence conditions
and SAT-based analysis to quantify the number of possible
products that can be derived in a product line [14]. Our
treatment of presence conditions for time-based goal model
deviates from the traditional notion of a presence condition
because we focus on variability within the temporal aspect of
a single model rather than possible combinations within the
goals, as analogous to features.

We are not the first to consider presence conditions in
the context of goal models. Horkoff et al. annotated iStar
models with May presence conditions to identify and resolve
design-time uncertainties [7]. Alwidian et al. annotated Goal-
oriented Requirement Language (GRL) models in order to
track changes in the model elements over time [15]. While,
the representations used by Alwidian et al. differ from our
work and that of Czarnecki and Antkiewicz [6], they are still
representing variability as the presence of an entity in their
union model [16].

Finally, as mentioned in the introduction, we build on
the prior work of Grubb and Chechik, which investigated
merging models across multiple time periods where not all
actors and intentions were present for the entirety of the
timeline [5]. In a similar approach, called TimedURN, Aprajita
and collaborators enable the evaluation of intentions in GRL
models to change over time and link these changes with use
case maps [3], [8]. They implemented presence conditions
as an instantaneous change, called a DeactivationChange for
intentions/actors and a LinkDeactivationChange for links. For
example, a DeactivationChange in our App example would be
to make AI Corp active at January 2023 (tc = 36). In the case
of an actor present from 24 to 48 (see Sect. III-A), then this
would be represented as three DeactivationChanges, two to
hide the intention at 0 and 49, and another to make it appear
at 24. While neither approach is better, we chose specifying
presence conditions over ranges because it allowed for easier
analysis and model slicing within our existing framework.

VI. SUMMARY

In this paper, we described our extension to the Evolving
Intentions framework to give stakeholders the ability to specify
presence conditions and reason about simulations where one
or more actors and intentions were absent for part of the model
timeline. We implemented these extensions in BloomingLeaf
and demonstrated their usage using an illustrative example of
an application adding a prediction feature. We evaluated our
implementation using a large model from the literature.

Our ongoing work focuses on incorporating presence condi-
tions with model merging. Using presence conditions as model
slices allows us to empirically observe how stakeholders in-
terpret large models. Future work will investigate generalizing
this approach to other goal modeling languages.
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