

On the Use of GPT-4 for Creating Goal Models: An Exploratory Study

Authors: Boqi Chen, Kua Chen, Shabnam Hassani, Yujing Yang, Daniel Amyot, Lysanne Lessard, Gunter Mussbacher, Mehrdad Sabetzadeh, Dániel Varró

Presenter: Kua Chen

Introduction

Background

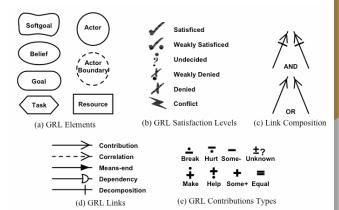
Experiment

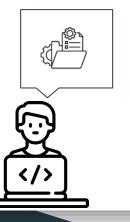
Challenges

- Goal modeling knowledge.
 - Describe concepts on goal modeling.
 - Explain the difference between

a contribution and a correlation in GRL.

- Goal model creation.
 - Generate goal model from text description.
 - Using the TGRL, please provide a goal model for a Kids Help Phone application.


Background


Experiment

Conclusion

Background - GRL

- The Goal-oriented Requirement Language (GRL)
 - Standardized goal modeling language.
 - Includes actors, intentional elements, links.
 - Has a graphical notation and textual notation (TGRL)
- Creating a goal model from scratch can be tedious.
 - Usually done manually.

Background - Large language models

- Large language models (LLMs) are a type of natural language processing (NLP) application originally designed for text generation.
- LLMs are also widely used for **software engineering practices**.
- Basic mechanism: given a sequence of tokens, LLMs predict next token.
- The very initial input sequence of tokens is called **Prompt.**

Figure left 1 from: https://commons.wikimedia.org/wiki/File:ChatGPT_logo.svg


Figure right 1 from: J. Horkoff and E. Yu, "Interactive goal model analysis for early requirements engineering," Requir. Eng., vol. 21, no. 1, p. 29–61, March 2016. [Online]. Available: https://doi.org/10.1007/s00766-014-0209-8

Research Questions

RQ1: How much **goal modeling knowledge** does GPT-4 preserve?

RQ2: How does GPT-4 perform in **goal model generation** from textual descriptions with different levels of detail?

RQ3: How does **immediate interactive feedback** affect the quality of goal models generated by GPT-4? (Read it in our paper)

Experiment B - Baseline Knowledge

- Check baseline knowledge through **direct questions** on goal modeling.
 - **Concept**: focus on the meaning of one or more goal-modeling concepts.
 - **Application**: apply concepts to solve some tasks.
 - **Open**: has many correct answers.
 - **Closed**: has a unique answer.

TABLE I: Example Questions for each Category for Experiment B

Concept	Open	Explain the difference between a softgoal and a goal in GRL.		
Concept	Closed	What are all the types of qualitative contributions supported by GRL? Provide a one-sentence		
		description for each of them.		
Application	Open	Give me a sample goal model in the Goal-oriented Requirement Language (GRL), with 2 actors that		
Application		have several goals each, as well as relationships.		
	Closed	Create a small GRL model (with one goal linked to as many indicators as you need) that determines		

Experiment B - Baseline Knowledge

• Context prompt: You are a software engineering student on an exam for goaloriented requirement engineering.

Follow the instructions in the question and answer the following question concisely.

- **R1**: no context prompt. **R2**: with context prompt.
- Four authors manually grade each response from {0,1,2,3,4,5}
- Context prompt **improves** GPT-4's performance on the question answering.

TABLE III: Average Score of all Questions for Experiment B

	Run 1	Run 2	Run 3	Run 4	SD
R1	3.00	2.97	2.39	2.44	0.29
R2	3.39	3.75	3.78	3.86	0.18

Experiment B - Baseline Knowledge

- Performance on **Concept questions** is significantly improved by the context prompt.
- **Closed Concept** questions are very challenging to GPT-4.
- GPT-4 excels at **Open** questions due to its generative nature.

<i>R1</i>	Application	Concept
Open	4.38 ± 0.26	3.25 ± 2.30
Closed	2.13	1.60 ± 1.48
R 2	Application	Concept
R2 Open Closed	Application 4.23 ± 0.46	$\frac{\text{Concept}}{4.75 \pm 0.27}$

TABLE IV: Results of Two Rounds for Experiment B

Experiment

Conclusion

Experiment B - Baseline Knowledge

RQ1: How much goal modeling knowledge does GPT-4 preserve? We find that GPT-4 preserves considerable knowledge on goal modeling.

Background

Experiment

Experiment K - Kids Help Phone

- Evaluate how well GPT-4 can create a TGRL goal model from scratch.
- Kids Help Phone application provides online counselling for Canadian children.
 - Prompt 1: Single Sentence
 - Prompt 2: Single Sentence + Domain Paragraph
 - Prompt 3: Syntax Description + Single Sentence (Prompt 1);
 - Prompt 4: Syntax Description + Single Sentence + Domain Paragraph (Prompt 2);
- Evaluate element based on four categories:

Correct, Partially Correct, Incorrect, Reasonable

1800 668 6868 KidsHelpPhone.ca

Kids Help Phone

Introduction

Background

Experiment

Conclusion

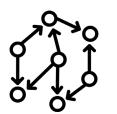
Experiment K - Kids Help Phone

Longer prompt → Better result**?**

Low coverage for elements.

Syntax prompt is **helpful**.

Reasonable elements: 60% too **generic** 40% **valuable**.


Background

Experiment

Experiment K - Kids Help Phone

- The **Social housing** case study confirms the findings.
- No ground-truth goal model known to GPT-4.

 RQ2: How does GPT-4 perform in goal model generation
from textual descriptions with different levels of detail?
GPT-4 exposes the modeler to useful ideas that may be nonobvious to stakeholders outside the domain.

Introduction

Experiment

Conclusion

Conclusion

RQ1: Goal modeling knowledge?

Possess

considerable

knowledge.

RQ2: Goal model generation?

Generate useful ideas. RQ3: Immediate interactive feedback?

Feedback can

be helpful.

There is value.