
Modelling Uncertainty for Requirements:
the Case of Surprises
Dylan J. Walton, Huma Samin, Nelly Bencomo

Department of Computer Science
Durham University, UK

{dylan.walton, huma.samin, nelly.bencomo}@durham.ac.uk

Abstract—The concept of Surprise has been used to model
uncertainty for self-adaptive systems (SAS). The uncertainty in
the environment of SAS demands the system to perform self-
adaptation decisions, and therefore makes it hard to formulate,
validate and manage their non-functional requirements (NFRs).
A number of probabilistic measures exist that compute surprise
to flag up situations of uncertainty for NFRs. A problem with
these measures is that they don’t give any information about
how big or small the surprise is, and therefore lack support
for quantification of the level of uncertainty and its impact on
NFRs. The challenge here is to classify the size of surprise to
better model uncertainty levels for NFRs. We argue based on
classification, surprise can be used to identify failure situations
for NFRs, and thereby support modelling of risks. In this paper,
we propose a framework to allow for the classification of surprise.
Based on this framework, we perform an analysis into risk for the
NFRs. As a proof of concept, we have applied the framework to
case of Remote Mirroring. The risk analysis is performed on both
individual NFRs as well as combinations of them to demonstrate
the framework’s utility across a variety of tasks.

Index Terms—Uncertainty Modelling, Surprise, Self-Adaptive
Systems, Risk Analysis, Non-Functional Requirements

I. INTRODUCTION

Surprise has been used in many fields, in neuroscience for
example surprise refers to a series of reactions to startling
or otherwise unexpected events [1], [2]. This wide range
of applications has lead to many different definitions and
formulations of surprise tailored to given tasks where surprise
might be used. Surprise in computation, like in neuroscience,
can be defined as a difference in expectations where the
expectations are approximated using different variables in a
system [3]. These expectations, also known as beliefs, could
potentially vary wildly, the system needs to know how to
react appropriately to large changes in expectation which are
”surprising”. Surprise naturally arises from uncertainty, and
has been used as a method to model uncertainty for self-
adaptive systems (SAS) [4], [5].

The uncertainty in the environment of SAS demands the
system to perform runtime self-adaptation decisions, and
thereby manage its non-functional requirements (NFRs) [6]–
[10]. Hence, a SAS should be able to autonomously assess de-
viations from its specified behaviour and use these deviations
to consider triggering the corresponding adaptations. Surprise
has been used here to provide a measure of this discrepancy
and can then be used to help designers deal with this uncer-
tainty by providing measures of how new information differs

from a designers and a systems expectations [5]. Hence, the
concept of surprise allows the SAS to be able to deal with
uncertainty in an explicit way.

A number of probability based measures have been de-
veloped for computation of the surprise [1], [3]. Out of the
measures presented in [3], Bayesian Surprise [2] has been used
to flag up situations of uncertainty for NFRs [5], [11] of SAS.
A problem with the existing measures is that they don’t give
any information about how big or small the surprise is, and
therefore lack support for quantification of the level of the
uncertainty and its impact on the satisfaction of NFRs. This
leads to a potential problem with surprise, which is how can
we classify the size of surprise? We argue that having the
capability to measure the size of surprise can help the SAS to
identify and model the situations of risks that could affect the
satisfaction of the NFRs, and therefore improve the adaptive
mechanism.

In this paper, we propose that surprise can be used to
produce a model of risk for SAS. We propose a set of tech-
niques to classify surprise to model uncertainty for the NFRs
of SAS. Based on the classification of surprise, we perform
risk assessment using the level of uncertainty identified by the
surprise classes. For the purpose of experimentation, we have
used two types of surprise measures: Bayesian surprise and
Confidence Corrected surprise (CCS). So far Bayesian surprise
has been the dominant way to calculate surprise to measure
uncertainty [4], [5], [11], but it is not the only measure and
other types of surprise [1], [3] can capture different facets
of information that could help both in modelling risk and its
analysis. CCS differs from Bayesian surprise as CCS attempts
to bring in confidence to the surprise value [3], which is
done by using a single distribution as its “prior”; Bayesian
surprise in contrast uses multiple priors at different points
of the process (priors will be explained in section 2). Both
measures of surprise will be used and contrasted with their
helpfulness in modelling risk within the SAS.

The contributions of this paper are as follows:
1) First is the framework which will be used in how

to analyze and interpret the different surprise values,
specifically with how they relate to risk.

2) Related to the framework is the creation of techniques
that can be used to link specific groups of surprise to
increased risk, the results of which are what will be
interpreted by the framework.



3) This paper will also look into the classification of
different surprise values based on their potential risk
within the environment and the potential risk they may
indicate to the SAS itself.

4) The last key contribution of this paper will be an
evaluation into the use of alternate surprise measure i.e.
Confidence Corrected Surprise (CCS) [1].

The paper will show the results of the tests into these contri-
bution on an illustrative case within an example SAS, the SAS
being the Remote Data Mirror Simulator (RDMSim) [12]. The
RDMSim will contain all relevant metrics required to calculate
surprise and demonstrate the results. Experimentation consists
of applying the techniques in order to identify “high risk”
groups, for a technique to be successful it means that different
groups have unique features that differentiate them from other
groups that is not simply due to size alone. Experimentation
on classification will involve tweaking parameters in order for
the end result to resemble the differences in the groups, so
what ever is classified as high risk has features that would
indicate this risk, the reverse being true for low risk groups.
Experimentation on CCS vs Bayesian surprise as discussed
will be performed by applying the identified techniques to
both and finding which is more helpful for risk modelling and
analysis. It will be shown that there are a number of techniques
that can be used to find groups at different levels of risk, that
these groups can be classified according to some criteria, and
that CCS can be used as an alternative to Bayesian surprise,
though its application may vary in context. The results of these
sections will all contribute to the framework produced that will
allow requirement engineers to better analyse risk within their
systems.

The paper is organized as follows: Section II covers the
baseline concepts, fleshing out important concepts related to
surprise and uncertainty in SAS. Section III covers the method-
ology, where the techniques to be employed are explained,
as well as how classifications are determined, how both the
results link to risk modelling. Section IV covers the experi-
mentation, where tests with the different possible techniques
are covered to check their effectiveness, as well as tests into the
specific ways classification are performed. Section V covers
discussion on the results found in experimentation, as well
as potential applications elsewhere. Section VI covers related
work to this topic, and section VII concludes the paper.

II. UNCERTAINTY IN SAS AND THE CONCEPT OF
SURPRISE

The environments that SAS operate in are by their very
nature subject to uncertainty [6], [7], [9], which is to say that
these environments are unpredictable and our systems may
be subject to events that designers could not foresee [6], [7],
[13]. That is not to say it is impossible to make predictions,
whilst environments might be random they are most likely still
constrained by certain rules, or follow trends that designers can
take advantage of, uncertainty should mostly be an issue with
edge cases that happen somewhat infrequently, or due to many
small errors building up over time. A SAS when reasoning

about its environment maintains a belief (or assumption) about
the environment. This belief is based on several variables
maintained by the SAS that give some indication about the
current state of the surrounding environment and what the
SAS thinks will happen next in the environment. These beliefs,
for example, could be about the satisfaction of NFRs such as
reliability or performance of a component of the system, or
about some estimated variable within the environment, but all
are given as a probability that this event does/does not occur.
It should be briefly noted that beliefs are not equivalent to
expectations, though for the purposes of this paper they will
be treated as such as the concern is only with those beliefs
that are also expectation.

For the purpose of modelling and reasoning about uncer-
tainty of SAS, the concept of Surprise has been presented [5],
[11]. In animals, surprise arises from the difference between
prior expectations and the reality as the events occurs [2].
Similarly, for the SAS, a surprise is defined as the difference
between prior and posterior beliefs about the state of the
environment [5]. The question becomes what is to be used
as prior and posterior beliefs, which is answered through the
use of Bayesian surprise [4], [5] defined as follows. Bayesian
surprise is one way of mathematically formulating surprise. It
is measured as the distance between prior and posterior beliefs
[3] [5], with prior beliefs simply taken to be beliefs before
an event occurs, and the posterior beliefs those immediately
following the event as follows:

SBS = log2(
P (m|D)

P (m)
) (1)

Where m is simply some belief and m|D is the same belief
after being modified by some data (D) or series of events.

This can be contrasted to something like confidence cor-
rected surprise (CCS) [1] which is another probability based
surprise measure that we have used for modelling of uncer-
tainty for SAS. CCS is defined with a prior belief as some flat,
uniform, distribution meant to provide information relating to
confidence on account of the single prior; and posteriors as
before are taken to be the beliefs at any subsequent timestep
after some event/series of events has occurred [3]. The reason
for using a flat distribution is because surprise should be
larger when a system is confident about a given belief, which
is captured by the different between the flat prior and the
posterior beliefs. This flat belief will be taken to be the
belief at the very beginning of a run, which will always be a
50% chance of failure. Confidence corrected surprise offers an
interesting comparison to Bayesian surprise, the latter might
be sensitive to many rapid changes due to the prior constantly
changing with the posterior, the former on the other hand
by using a single prior can potentially offer better insights
as all surprise values will relate to a single point. That is
not to say that CCS is guaranteed to produce more reliable
surprise values, rather that it and Bayesian surprises use might
circumstantial based on the issues a designer is facing at that
time. The CCS is computed as follows:



SCC = log2(
P (m|mflat)

P (mflat)
) (2)

Where m|mflat refers to any given belief (the ”flat” belief
after being transformed by new data) and mflat refers to the
flat distribution here taken to be the belief at the first timestep
(50% chance of failure).

III. METHODOLOGY

This section presents the methodology for the proposed
approach. We have used an example case of Remote
Data Mirroring (RDM) System [14], [15] to illustrate the
full methodology. Next, we describe the RDM case as follows:

Example Case: Remote Data Mirroring: A remote data
mirroring is a disaster recovery technique which involves
maintaining links to backup server from which lost informa-
tion can be restored or otherwise accessed [14], [15], its
successful operation will require it have different requirements
balanced. As a concrete example, we have used an open
source artefact of RDMSim [12] to provide simulations of
the different environmental situations for a remote mirroring
network. The RDMSim is designed to assist designers of
SAS by providing an environment for which they can use
to test their managing components (these being the parts of
the SAS that make decisions regarding the environment). The
RDMSim itself require 3 non-functional requirements (NFR)
be satisfied which relate to the performance of difference
parts of the system, the Minimization of Operational Cost
(MC) requires bandwidth consumption not reach a threshold;
Maximization of Performance (MP) requires that the time
taken to edit the contents of the backup servers (i.e. both
reading and writing time) not reach a threshold; lastly is the
Maximization of Reliability (MR) which require a minimum
number of active links to be maintained. The architecture
of RDMSim comprises two main components: the managing
component which involves the adaptation logic and the man-
aged component which involves the application logic for the
remote mirroring network. As the managing system involves
the adaptation logic for the RDMSim network, it maintains
beliefs (i.e. assumptions) relating to the different requirements,
with the beliefs giving the probability a given requirement
will be satisfied. Finally the RDMSim also allows for tests to
be done on different scenarios which can simulate different
potential environments a SAS may find itself in.

The process of modelling uncertainty for NFRs based on
surprise, and the risk analysis for performing analysis of failure
situations of NFRs, presented in Fig. 1, is described as follows:

A. Surprise and Failure

An important part of this analysis will be the use of surprise
to assess the situations of failure where some requirement is
unsatisfied. In the RDMSim, failure will be where at least one
of the three NFR’s crosses their threshold and ceases to meet
its required satisfaction level. The way surprise and failure
are linked is that a surprising event (but not surprise!) will

be determined to be where failure occurs, more specifically
where a previously satisfied NFR switches to being unsatisfied.
The reason for using where failure first occurs over failure
more broadly is it can give better insight into the risks that
lead to failure, rather than also having values that simply
continue with the trend established by previous events. This
will allow a clear link between surprises and risks as now we
can produce subsets of surprise values that are also guaranteed
to be surprising and use these to look for issues both in the
environment but also in the managing system of the RDMSim
simulator. From this point on failure will be used to refer to
the surprising events rather than simply any time step some
requirement is not met. Potential subjectivity is dealt with
using the 3 NFR, the idea is that each NFR gives a subjective
measure of the systems satisfaction, with is possible all, none,
or some combination being satisfied.

The first part of the process to model uncertainty for NFRs is
the calculation of surprise using the equations shown in section
2. The beliefs are taken from the RDMSim [12] simulator and
as previously discussed represent the probability of failure for
one of the 3 NFR’s as assigned by the simulator and managing
system. The beliefs maintained by RDMSim at each simulation
time step are iteratively used to calculate the Bayesian [5] and
Confidence Corrected Surprise [1], producing a list as long
as the initial input. As the Bayesian Surprise and Confidence
Corrected Surprise represent a deviation value without an
upper bound. They don’t give information of how big or small
a deviation or a surprising situation is. For the purpose of
computing the size of the surprise, we have used a Sigmoid
function [16] which bounds these surprise values between 0
and 1. For specifically CCS, the values are also normalized
by subtracting the smallest element, this is to avoid instances
where all values are incredibly high and thus are all moved
into the same grouping. Also produced by the simulator is a
list of simulation time steps where failure occurs, these values
are also loaded and stored in a list such that each NFR surprise
value and has an associated ”failure” which is either true or
false, this list is then edited such that only values where failure
occurs and the previous state was satisfied are considered to
get surprising events. From here a subset of surprises can be
produced which gives the surprise values for where failure
occurs, thus the original set and its subset can be used to start
checking which surprise values have an affinity for failure, the
methods for refining these groupings is discussed in the next
section. This array of surprising events can be used to produce
a subset of surprises where surprising things happen, risk can
then be modelled based on comparisons between the two.

B. Surprise identification

One of the contribution of this paper is the identification
of techniques to model high risk groupings from the list of
surprises, the first of these techniques is a simple binning
method to start classification of the surprise values. Here, the
surprise values are grouped in some intervals according to the
size of surprise, and as surprise value is between 0 and 1
so are the interval bins. This technique allows us to further



Fig. 1. A broad outline of how Uncertainty is modelled for Risk Analysis.

focus on the separate bins allowing a more thorough analysis
of the contents. We can also ”bin” the results of the subset
of surprises where failure occurs in the same way, and using
these two values we can calculate the failure rate of a given
group (that is, the percentage of elements within the group
that are surprising) and the percentage of failure for a group
(what percentage of failure in the entire run belongs to a given
group). To illustrate the difference consider some group that
has 20 elements out of 100, and 10 failures of a particular NFR
out of 40, in this instance the failure rate would be 50% as half
of the values in the group are failures, the failure percentage
however would be 25% as the group contains that amount of
all failures in the entire run.

The next method for identifying high risk groups for clas-
sification is by breaking down what is happening in the other
NFR when failure occurs. What is done here is that for one of
the groups produced in the binning, we can break down this
group further using the exact same technique. However, now
we will be looking at the surprise values of the other NFR to
see if there are any links that might help us identify risk. This
technique is usable for all types of surprise, and it is hoped
that it will allow us to identify high risk groupings and can
also provide knowledge about how different NFR impact each
other.

C. Surprise Classification and Risk Assessment

The next stage in the process is the classification of surprise
for the purpose of risk assessment. This involves taking the
groupings produced by the prior steps and classifying them
based on risk, which here will be taken to be the number of
failures over the total number of surprises in that group inter-
val. From here the classifications can be refined and changed,
the alternate methods such as using subsets related to increases
in risk can also be considered and grouped, and other factors
may be considered to add weighting to the classifications, such
as having too few instances to make a proper judgement or
having a disproportionate amount of surprising events (even if
these surprising event to surprise group ratio is low) may be
considered to add alter the classification in some ways.

As risk has been modelled to be based around the likelihood
of failure classification can now be performed using the results

of the techniques previously mentioned, the end result should
be a classification that factors in both risk within the SAS’s
operational environment and risk to the SAS itself through
poor belief calculation. Risk in the environment is given
simply by the failure rate and failure percentage previously
discussed, it involves no further analysis on why the order
of risk is the way it is, it simply takes it at face value and
used this to decide which surprise values are likely to contain
failure. Risk analysis can be performed by simply checking
the classification as well as any other saved metrics taken
from the techniques and using this to assess where resources
should be allocated. Analysis into risk due to errors within
the SAS is done using the same classification but adding an
additional step, checking how far away different groupings are
from where they ”should” be, some discrepancy is expected
(such as with groups that simply never occur because the
average surprise is too low/high) but a lot of difference or
even inversion of the expected order could point to errors.
Analysis here can be used to identify areas for improvement
and issues within the SAS when engineering requirements.

D. Bayesian and Confidence corrected surprise

Previously, Bayesian surprise has been the dominant form
for which surprise has taken in modelling uncertainty for
SAS [5], [11]. This is not the only form of calculating surprise,
so this paper extends its scope to also compare Bayesian
Surprise to a different technique, namely Confidence Corrected
Surprise (CCS). A comparison between CCS and Bayesian
surprise will also be produced by comparing how well the
surprise values can identify failure, which versions require the
least work to find these surprise groupings, and which produce
the most ”intuitive” surprise classifications at the end of the
process. These can be measured based on which definitions
produce the groups of surprise with the highest proportion of
failure, which produces the most high surprising groupings,
how many steps it takes to find a high failure surprise group,
and finally by comparing the produced classification to the
intuitive one as described in the baseline concepts section.
The comparison intends to find which of the two definitions is
most helpful for modelling risk, which may be both generally
or scenario specific.



IV. EXPERIMENTS

In this section the proposed techniques will be tested for
each scenario of the 7 scenarios of the RDMSim [12]. Due
to the limitation of space, only one (scenario 0) will be
discussed in this paper, however the remainder can be found
in a GitHub repository [17]. In order to ensure results are
accurate 5 runs over 500 time steps each will be performed,
the relevant metrics will be calculated and averages of the
5 runs will be shown. The techniques tests will be done
for both Bayesian and Confidence Corrected Surprise, with
a brief comparison done for the illustrative scenario case.
The experimentation for the proposed techniques consists of
applying the techniques as proposed in the methodology and
looking for unique features within groups. What is meant here
is if the techniques were to fail there would be very little to no
difference between the set of values produced after applying a
technique than the set of values it is being applied to, success
means the technique has produced unique values that differ
from the base set and provide insight into which groups are
likely to cause/contain failure. Experimentation for classifica-
tion consisted of tweaking a process for moving groups into
classes, this set of experimentation is very subjective and so
the details of tweaking do not go into detail, the important
part is that classes reflect the results produced in techniques,
that something that has high chance of failure is correctly
move into one of the two highest groups. Experimentation into
Bayesian vs Confidence Corrected surprise is done parallel to
experimentation into techniques, techniques applied to both
sets of surprises will be shown and briefly compared, though
the actual discussion is saved for the subsequent section.

As mentioned in the methodology surprise values will be
binned, what was chosen were 10 equal bins from values 0 to
1 in increments of 0.1. The lower bound of some interval will
be used as shorthand for the entire range, so the group 0.2 to
0.3 will simply be referred to as 0.2.

A. RDM Illustrative Scenario Case

Basic binning was performed on the now calculated surprise
values as discussed in the methodology and as shown in Fig.
2, the first set of results will focus on the helpfulness of
failure rates. Failure rate was found by dividing the number of
surprising elements in a group by the number of all elements in
the group, and the results are promising. For MC in Bayesian
surprise two groups had a higher than 25% failure rate, 0.6 and
0.7, with 0.6 having the highest at 73% and 0.7 having 34%;
MP had groups 0.6 and 0.8 with failure rates of 62% and 42%
respectively. The results for CCS were similar, for MC a single
group was identified that had more than 25% failures, that
being 0.5 with 73% failures, MP had 0.6 and 0.9 both of which
also had 62% and 42% failures. The results on these values are
very similar, CCS faltering only in producing the additional
high failure group Bayesian does, with the difference being
made up that the remaining groups in CCS all have slightly
higher failure rates than their Bayesian counter parts. In both
cases the failure rates only occurred for the smaller groups
however, with larger ones having rather low failure rates which

limits the use of the technique here. Unremarked upon so far
is MR as the results differ from the rest, for Bayesian surprise
groups 0.3 and 0.4 had failure rates of 51% and 41%, with
the remaining results trailing off as surprise gets lower. CCS
separates all surprising values into 3 groups, each of which
had around 50% failure. In both cases for MR the groups are
large, high failure groups accounting for around 2/5 values,
CCS seemingly worked slightly better as it perfectly separated
failure so the only groups to have it for MR all had above 45%
and having more members in these groups. This also starts a
trend in which MR differs in behaviour from the other two
NFR, which is partially expected as the other two NFR are
linked, but the extent to which this differs stands in contrast to
how the manager should behave, this now serving as an early
indicator that something is wrong. Importantly, this value can
be used to help model risk in the environment as it gives the
probability that if this surprise value is found that it will mean
failure but cannot be used alone to issues with the SAS.

Another simple technique is to simply see which groups
contain the highest percentage of total failure, with groups
containing a large amount of failures still posing a risk even
if the failure do not make up a large percentage of the group
itself. This technique on its own can be used to help understand
risk within the environment, like before by indicating which
groups are likely to contain failure, but this method can
be combined with a comparison to the size of percentage
of members each group has relative to the total number of
potential members in order to gain better insight. An example
of this comparison is shown in Fig. 4, where for groups in
MP 0.6 has a much larger amount of failures compared to
the groups normal size. Results here were again successful,
for Bayesian surprise MC 0.4 contained half of all surprise
values which should indicate its potential risk, however, 0.4
itself makes up half of all elements in a run normally so the
extent of this risk is mitigated by this fact. In CCS MC 0.3
was effectively equivalent to Bayesian MC 0.4, both Bayesian
and CCS had groups that had failure occur at a much higher
rate than the group itself did, those being 0.6 for Bayesian and
0.5 for CCS. The results between CCS and Bayesian are again
similar, as are the results of this technique and the prior one,
and though it will be shown in other scenarios that this is not
guaranteed to be the case it does point to many similarities
between the methods of computing surprise, that even though
they use completely different priors a broad trend of types of
groups emerge between them when conditions are right.

Techniques thus far have focused on identifying risk within
the environment by finding which groups of surprises are
likely to have or even be failures, a different use is to find
faults within the managing component itself. Methods here
are looking for differences between which surprise groups are
actually likely to indicate failure and which ones we expect to
indicate failure, where there is a difference there is a potential
error within the SAS. The expected ordering here is a simple
size order, as larger surprise if functioning well means a
larger probability of failure, and though this ideal situation
is unlikely to be followed precisely larger gaps can point to



Fig. 2. The different failure rates for the groups of surprise in Bayesian and Confidence corrected surprise

Fig. 3. A comparison between different potential groupings, using the base
rate of failure for all surprises in MC, Bayesian group MC 0.5 and CCS group
MC 0.6, as well as the subgroup formed from MP 0.6 for both/

Fig. 4. The different proportions of each group with more than 5 values for
MP. On the left: The size of each surprise group as a percentage of the total.
On the right: The size of each failure subgroup as a percentage of the total.
Legend shows which groups are used for both.

serious issues. Within scenario 0 the most obvious example
is MR, as previously discussed MR values in Bayesian are
inverse to the intuitive size order, with risk given by failure
rate decreasing as surprise increases, which would mean that
events that beliefs say decrease the probability of failure are in
reality more likely to fail than later events. Comparing this to

the other NFR which behave relatively more like the expected
version this means something is going wrong when making
decisions for MR, possibly that it is being under-prioritized.
CCS had a similar problem though not the extent Bayesian
surprise had it, in CCS as discussed the three groups to contain
surprise all had high failures rates around 50%, with at least
one group detailing a slight decrease in risk (group 0.4), this
is not as severe however as 0.4 was small compared to the
other high risk groups. In this instance CCS again served to
produce better indicators of risk, though the technique is useful
for both types of surprise as evidenced by Fig. 3.

The last technique to be discussed is the breaking down of
groups into further subgroups based on the surprise values of
other NFR. This technique can be used for classification but its
main purpose here is to assist with analysis and link together
the different NFR than purely serve as additional categories.
The results were incredibly successful, for many different
groups across the different NFR’s and surprises subgroups
were identified that suggested strong links between different
surprise values, whether they had failures or not. MC 0.2
for example in CCS had well over half of its values (171)
occur alongside MP 0.3, for Bayesian surprise a similar thing
occurred between MP 0.4 and MC 0.4, where 149 out of 176
values for the former were shared with the latter. In terms
of producing sub groups more indicative of failure success
was found but for this scenario was slightly limited, where
high surprise subgroups were possible it was usually only as
improvements to groups that were already classified as having
a high failure rate, where such an improvement was possible it
was often significant. For Bayesian MC 0.6 had a failure rate
of 73% for 35 values, the subset made by also using values
that were members of MP 0.6 had 24 values but a failure
rate of 94%. Interestingly the reverse was not true, MP 0.6
MC 0.6 had a similar failure rate to base MP 0.6, though
the potential of the method was still demonstrated, and both
values still occurred most frequently alongside each other. This
was also true for CCS MC 0.5 and MP 0.6 behaved similarly
to MC 0.6 MP 0.6 in Bayesian surprise, here however there



TABLE I
RISK CLASSIFICATION

Risk Level Surprise Grouping
1 0.3, 0.5
2 0.7
3 0.4
4 –
5 0.6

was also a pairing between MC 0.5 and MR 0.5, where this
subset also had a failure rate of 94%. The subgroups were not
included in classification on account of their small size, most
were below 20 members and though they were significant as
these results were confirmed over multiple runs may clutter
the classifications at the moment for little gain. That is not to
say that they can never be used for classification, but simply
that in these runs it would inappropriate to do so.

B. Classifications

A lot has gone into developing and analysing these tech-
niques described so far, but the next stage in the process is
the classification of results. The first step involves looking
at two metrics, the internal failure rate of a group, and the
difference between that groups occurrence, and the occurrence
of surprises within that group as members of their respective
sets (occurrences generally and the subset of failure surprises).
An initial sorting is done based purely on the failure rate,
which depending on the percentage of failures can be sorted
into one of five groups, corresponding from low to high risk.
The bounds of these groups are in intervals of 12.5% until
50%, which due to the few examples of groups beyond this
values everything beyond 50% is grouped as high. Sorting is
not yet finished however as this is not the only metric. Also
relevant to consider are the total percentage of failures a group
has as well as the number of members, based on which values
may be moved up or down in risk. An example is some group
may be sorted into the ”middle” risk grouping due to having
a failure rate above 25% but below 37.5%, the proportion
of surprise however may be quite large, and in this instance
it would be moved up a grouping as well. The final step is
considering the actual number of values, if the group is too
small (which is here is defined to be less than 10 instances)
it is deemed too small to be of great risk and simply moved
to the lowest value, if the amount of members is less than
20 the group is simply ”demoted” to the risk group below as
whilst it may pose a great danger its values are still too small
to consider it equivalent to groups with many members. The
groups should thus give levels of risk relating to both risk in
the environment. The classifications of risk for both Bayesian
and Confidence Corrected Surprise on the NFR MC, with
numbers 1 to 5 corresponding with low to high risk (Values
that are low risk due to lack of values are left out) as shown
in Table I.

These values on top of telling us about risk within the
operating environment can also tell us about faults in the SAS,
though they are few in this example. The key issues are the low
value for 0.7 and the fact that 0.4 and 0.5 should in likelihood

be reversed. In the former case this is a result of its size, though
due to having enough values to be relevant should still be just
below 0.6, this may be simply because of noise and a stricter
filter is required, or this may be because of faults within the
system, though designers would now know this is an area to
look into. The fact that 0.5 is below 0.4 despite both being
large may point to the system over prioritising MC, hence why
values immediately increasing risk slightly are so low, it could
also be a case of under-prioritisation where risk decreases but
not by much.

C. Framework and interpreting results

Mentioned during the demonstrations of the different tech-
niques is how exactly these are then linked to surprise and risk
analysis, some early connections should be apparent, such as
the focus on identifying groups with high failure which would
have the obvious advantage of highlighting to designer where
attention needs to be paid. The main technique to accomplish
is then is simply calculating the failure rates of the different
groups, which would give an indication of how much certain
surprise values are to indicating a failure in an NFR. Another
connection to risk analysis is the use to find potential faults
within the managing component of the RDMSim, as discussed
the RDM Simulator is supposed to assist designers of SAS
in designing managing components that can balance multiple
and potentially conflicting NFR. A key part of this will be
the calculation of beliefs, which if designed appropriately will
mean that if a belief in failure increases from one time step
to another a failure is actually more likely to occur. Using a
different technique involving the comparison of the percentage
of items a group contains compared to the rest, to the same
but for the subset of values where failure occurs, the prior
technique of simply using failure rate for the group can also be
used. What is expected is that the larger surprise is, the more
failure should be in that group, either as the groups failure rate
or simply by containing a larger proportion of failure than any
other grouping. Discrepancies between this expectation and the
actual results can point to errors in the managing component,
and the way these errors manifest in the different NFR can
point to what the precise cause is (if has low failure throughout
but another has many failures where the should not perhaps it
will be the case that manager is biased towards one NFR in a
way it should not be).

V. DISCUSSION

A. Efficacy of the Approach

The binning of the surprise values allowed for an easy and
intuitive way to break down the surprising situations in order to
analyze the subsections. The bins then served as the basis for
which further analysis could be performed focusing on failures
and their size relative to the different groups. A limitation
of this technique is that there is no real way to decide an
appropriate size of a bin nor how it should be broken up. It
could be the case that smaller and more frequent bins can work
better by breaking up larger groups, it is shown in the results
for the other scenarios that certain bins contain too large a



share of values which caused issues when trying to analyse
the results. Smaller intervals, however were not a guaranteed
fix, using 20 bins for example did not help much for certain
scenarios when breaking up groups, and further sub-divisions
risked breaking up any other successful groups until it was
too small to be relevant. A different approach to binning may
have also helped, the use of machine learning models was
considered and tested in order to more accurately bin data
using techniques such K-means clustering [18], though these
the groups produced were often less intuitive and were not as
successful at finding groups that should discrepancy with how
the manager should be running. Nevertheless, it may still be
the case that machine learning methods [19] can employed for
the early groupings, though here it proved to be ineffectual.

Next is the use of said bins for identifying potential risks
in the system, which was done by comparing the number of
failures in group to the number of elements generally within
that group, with slightly different ways of performing this
depending on if the environment or the system itself was the
focus of the analysis. For analysis into the environment the
main methods were comparison of failure as a percentage of
the interval group (so comparing what percentage of the group
was failure) and comparisons between the size of the group
as a percentage of the total (number of group elements over
number of elements generally) and the number of failures as
a percentage of its total. As discussed in the risk assessment
part of the methodology, these two factors can give insight
how likely a given surprise value is to indicate some failure
has occurred, and where failures are most frequently occurring,
which can allow designers to better identify risk and determine
how risky certain surprise values are (though this links to the
classification). There is also an ”intuitive” way of analyzing
surprise, which is the larger surprise is on at a given timestep
the more likely failure is to occur. The technique comparing
failure rates and broader failure occurrence only has use due
to the fact the expectations of how surprise values are to
behave are not always met. This can be for benign reasons,
perhaps certain surprise values never occur and so seemingly
appear low risk, or they are outliers but can be safely ignored,
sometimes however these differences can indicate a more
fundamental problem with how beliefs are assigned and in
this case the second use of the techniques can be used. Like
with the environment focused method the comparison between
group percentage and the corresponding group percentage for
the subset of values where there are failures may be used, this
and simply comparing the order of ”least likely to most likely
to have failure” serve as the analysis into the managing system
itself. The goal was to find how these high failure rates differ
from the intuitive understanding, and based on this further
classify ”risk” based on likely faults in the managing system.
This would assist designer by help pointing to potential flaws
in their current designs. The main drawback here is that whilst
it points to the presence of risk, and potentially even gesture
at the cause based on which surprise values ”misbehave”, it
does not give a clear indication of what precisely causes the
risk.

To assist in the previous two ways of identifying risk was an
additional technique focused on combining multiple NFR sur-
prise values, rather than having its own purpose it could help
analysis and classification by linking together different NFR
by producing subgroups that may be more/less prone to failure,
as well identify which values occurred alongside the different
NFRs. It has been demonstrated in the illustrative case alone
the potential use, with many different surprise groupings being
dominated by one or sometimes two groupings in a different
NFR. The new subgroups can assist in identification of failure
in the environment by producing specific groups more prone
to failure, and can also potentially assist in identifying risk in
the managing system by pointing to potentially related reasons
in the other NFR. An example case for the latter might be that
unexpected failures are occurring in a low surprise value for
the NFR MR, but that this occurs only when MC also has a
low surprise value (but no failure) in this instance a potential
problem may be the over-prioritisation of MC

B. Efficacy of Surprise classifications

The other key proposal of this paper is the classifications
of surprise, as discussed in experimentation this is done in
multi-step process, the first step involves producing initial
assignments based on the failure rate of certain groups and
percentage of general failures. These are separated into 5
classes which assign risk low to high based on both risk in
the environment and risk for the the system, after the initial
assignment several other factors were considered to specific
details of the classification. If the number of group members
for example was too low this would risk demoting moving
the group down a class or simply assigning it to low risk
if the group was so infrequent, an additional movement up
the classes could also be made if the proportion of surprise
was large enough. The hope for the classifications is that
designers can quickly use the methods to find parts of the
managing system that need most urgent attention when dealing
with risk. A difficulty with this method is how to precisely
weight certain sections, the current method is rather simple as
when considering number of occurrences two simple bounds
consider, if it the group has less than 20 occurrences it is
demoted, if it has less than 10 it is moved to the lowest
risk group. Alternative methods may include even a variable
weighting system, where fractional movements can be done
based on number of members of a group, rounded to some
whole number, though for the purposes here were there were
500 members and usually only 2 or 3 groups had more than
100 members this seemed redundant.

C. Bayesian Surprise vs Confidence Corrected Surprise

The last thing to be discussed is the use of Bayesian
surprise vs CCS for the purpose of risk analysis, first is the
use for identifying identifying risk within the environment.
Focusing on identifying groups with high failure rate the
results were mixed, as both Bayesian and Confidence corrected
could produce such groups. Early on however, confidence cor-
rected appeared to be slightly better producing more ”unique



groups”,which is to say groups that differed from the base
surprise rate, which meant some groups had relatively low
surprise but others had really high surprise. This remained true
for Bayesian surprise as well, but was often slightly less so
than CCS. For MR values in particular, CCS in particular could
produce groups that were both large but had concerningly
high failure rate, such MR 0.6 in the illustrative example
given in experimentation. This trend however flips for later
scenarios, for both the different failure rates become more
uniform, but this is particularly true for CCS, Bayesian on
occasion at least produced some variation that might better
point specific areas of concern. A similar tend was noted when
simply looking at the proportion of failure each group had
relative to the total, early on CCS would produce groups that
contained over half of all failures, whereas (depending on the
scenario) Bayesian surprise produced groups which spread out
failure, the key downside being that it made it more difficult to
identify the causes of failure by having groups less indicative
of failure. Sometimes this was simply due to CCS producing
larger groups, such as was the case for all NFR in scenario 2, in
these instances not much new can be learned which would not
already be know from Bayesian, and in fact in these scenarios
Bayesian me even be better due to the fragmented failures
allowing for more variation, where focus can be given on more
specific values within the groups than simply having to look
at one half of the runs.

The other part was using the above techniques to identify
risk within the managing component itself, for both types of
surprise this was focused on identifying discrepancies between
how groups should be ordered and how they actually were, and
if there were other factors that might mitigate this. The results
again were also mixed, in that which surprise measure was
better varied from scenario to scenario. Both types of surprise
could produce groups and orders that could potentially indicate
flaws in the system, in scenario 0 the order of groups with the
most surprise for MR was in fact reverse to what it should
be on average over the 5 runs, CCS for the same scenario
however had all failure concentrated in a single groups, whose
proportional size was twice that of the regular groups including
non-failures as well.

VI. THREATS TO VALIDITY

Two different types of threats to validity will be covered,
those being external and internal validity. Briefly, external
validity concerns threats to performance and the scalability
of the solution; internal validity covers whether the proposed
solution will perform well in an actual environment.
External Validity: Currently we have test the system using
3 NFR, however situations may exist where we have more
NFR which may pose a threat to external validity. This could
potentially pose a threat to performance if the number of NFRs
was to greatly increase, though it is our intention in the future
to expand on this and test for greater numbers of NFRs.
Internal Validity: For internal validity, the results achieved
thus far have been ran on a simulated environment rather than
an actual one to simplify the process. Further tests will be

done to ensure the results of the RDMSim reflect an actual
environment. In a similar vein, findings in this paper should
also be confirmed for different types of environment, though
the RDMSim is supposed to be quite generic in order to assists
a variety of designers knowing these techniques interact with
other specific configuration could help highlight pitfalls or
improvements of and on these techniques.

VII. RELATED WORK

A number of techniques have been presented in the literature
to deal with uncertainty for SAS [8], [20], [21]. For the
purpose of quantification of uncertainty, Bayesian Theory of
Surprise has been used to deal with uncertainty related to
NFRs for SAS [5], [11]. Bayesian surprise has been used
along with the approaches of DDNs [4], [5] and POMDPs
[22]. Moreover, in [11], Bayesian surprise has been used with
multi-attribute analysis and Pareto Analysis to provide support
for multi-criteria decision making (MCDM). The approaches
presented in [5], [11] makes use of Bayesian Surprise as a flag
to identify the uncertain environmental situations. They don’t
perform analysis based on the size of the surprise to model
the level of uncertainty. In contrast, our proposed framework
makes use of both Bayesian Surprise [2] and Confidence
Corrected Surprise [1] to measure the level of uncertainty by
identifying how big or small a surprise is. This uncertainty
level helps us in performing risk analysis.

Moreover, to specify uncertainty in the requirements spec-
ifications, a formal requirements language known as RELAX
has been presented [23], [24]. Taking the semantics of RELAX
as a base, a technique known as RELAXing Claims has been
proposed [25]. The RELAXing Claims approach studies the
effects of uncertainty, taking into account the problems in
the monitoring infrastructure, on the validity of Claims (i.e.
assumptions/beliefs of the environment of the SAS). Further-
more, based on the concept of RELAXing Claims, a technique
called REAssuRE [7] has been developed. The approach of
REAssuRE makes use of goal models and Claims to support
decision-making in SASs. For the purpose of studying positive
and negative impacts of uncertainty on the runtime configura-
tions of SAS, an approach called POssIbilistic SElfaDaptation
(POISED) has also been developed [9]. The POISED approach
is based on possibility theory and fuzzy mathematics. The
POISED approach is used to deal with uncertainty for im-
proving the quality requirements (NFRs in our case) of SAS
at runtime. Moreover, techniques based on probabilistic model
checkers have also been used to specify and analyse properties
to perform reasoning about uncertainty [26]. The technique
presented in [27], [28] facilitates the software architects to
specify uncertainty about the effect of prospective alternative
adaptation strategies on the stakeholder’s goals and what
impacts the uncertainty would have on the satisfaction of goals
at design time. The authors in [27] apply decision analysis
and multi-objective optimisation techniques based on Monte-
Carlo simulation to assess the consequences of uncertainty and
therefore identify the potential risks. Although, all the above
approaches support the SAS in dealing with uncertainty, none



of these approaches supports the quantification of the level
of uncertainty. In contrast, our proposed approach supports
the modelling of the uncertainty levels by classification of
surprise, and thereby helps in risk assessment for SAS.

VIII. CONCLUSION AND FUTURE WORK

This paper had as its goal the creation a framework to model
uncertainty for NFRs of SAS and that could further be used to
model risks for requirements, in that the paper has been suc-
cessful. For the purpose of modelling the level of uncertainty
we performed the classification of surprise to measure the
size of surprise. Furthermore, multiple techniques have been
demonstrated such as the calculation of failure rates that have
allowed different amounts of risk to be calculated. The results
of these techniques have then been used to classify different
surprise groups based on the risk they indicate towards the
functionality of the NFRs. The last major contribution was the
study into the use of CCS and Bayesian surprise, the results
of which were that use of CCS is circumstantial, though in the
environment in may prove more useful than Bayesian surprise
this was not always the case, even when performing the same
task, whether or not it is used would ultimately come down
to how important confidence is to the current task.

There are many areas that could be explored next based on
the work in this paper. The first are studies into additional
surprise definitions. It has been shown that CCS can be as
good if not better than Bayesian surprise in modelling risk
for this task, there are of course many more definitions of
surprise, a comprehensive study could be done focusing on
when and where these different surprise values should be used
based on data in using similar SAS. Related to this is an
expansion of the work in this paper into different types of
SAS, it has now been seen what the results of this framework
has been on RDMSim, though are many more types of SAS
and though the RDMSim can be generalised to an extent more
comprehensive study could still garner further insight into the
works of this paper. Lastly, more unique and novel techniques
may be explored in order to identify and model risk, this paper
has proposed several, though there are no doubt many more
that could be developed and assist designers of SAS.

ACKNOWLEDGMENT

This work has been part supported by the EPSRC Project
Twenty20Insight (Grant No. EP/T017627/1) and EPSRC
Project MDE-Net (Grant No. EP/T030747/1): sub Project1
”ReqModAI Requirements Models for Artificial Intelligence:
Framework and Case Study” and sub Project2 ”iDecide: Quan-
tifying Uncertainty in Models using Artificial Intelligence for
Personalised and Shared Decision-Making in Digital Health”.

REFERENCES

[1] M. Faraji, “Learning with surprise theory and applications,” 2016.
[2] P. Baldi and L. Itti, “Of bits and wows: A bayesian theory of surprise

with applications to attention,” Neural Networks, vol. 23, no. 5, pp. 649–
666, 2010.

[3] A. Modirshanechi, J. Brea, and W. Gerstner, “A taxonomy of surprise
definitions,” Journal of Mathematical Psychology, vol. 110, p. 102712,
2022.

[4] N. Bencomo, “Quantun: Quantification of uncertainty for the reassess-
ment of requirements,” in 2015 IEEE 23rd International Requirements
Engineering Conference (RE), pp. 236–240, IEEE, 2015.

[5] N. Bencomo and A. BELAGGOUN, “A world full of surprises: Bayesian
theory of surprise to quantify degrees of uncertainty,” 36th International
Conference on Software Engineering, ICSE Companion 2014 - Proceed-
ings, 05 2014.

[6] P. e. a. Sawyer, “Requirements-aware systems: A research agenda for re
for self-adaptive systems,” in 18th IEEE International RE Conference,
pp. 95–103, IEEE, 2010.

[7] K. Welsh, P. Sawyer, and N. Bencomo, “Towards requirements aware
systems: Run-time resolution of design-time assumptions,” in 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), pp. 560–563, IEEE, 2011.

[8] S. M. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola,
and D. Perez-Palacin, “Uncertainty in self-adaptive systems: A research
community perspective,” ACM Transactions on Autonomous and Adap-
tive Systems (TAAS), vol. 15, no. 4, pp. 1–36, 2021.

[9] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty in self-
adaptive software,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering, pp. 234–244, 2011.

[10] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
“Software engineering for self-adaptive systems. lncs, vol. 5525,” 2009.

[11] S. Hassan, N. Bencomo, and R. Bahsoon, “Minimizing nasty surprises
with better informed decision-making in self-adaptive systems,” in 2015
IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 134–145, IEEE, 2015.

[12] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado, and E. M.
Fredericks, “Rdmsim: An exemplar for evaluation and comparison of
decision-making techniques for self-adaptation,” 2021.

[13] D. Weyns, “Software engineering of self-adaptive systems,” Handbook
of software engineering, pp. 399–443, 2019.

[14] K. Keeton, C. A. Santos, D. Beyer, J. S. Chase, J. Wilkes, et al.,
“Designing for disasters.,” in FAST, vol. 4, pp. 59–62, 2004.

[15] M. Ji, A. C. Veitch, J. Wilkes, et al., “Seneca: remote mirroring
done write.,” in USENIX Annual Technical Conference, General Track,
pp. 253–268, 2003.

[16] Z. Chen and F. Cao, “The approximation operators with sigmoidal
functions,” Computers & Mathematics with Applications, vol. 58, no. 4,
pp. 758–765, 2009.

[17] https://github.com/TheSequel02/Modelling-Uncertainty-for-
Requirements-The-case-of-Surprise-Results.

[18] G. Hamerly and C. Elkan, “Learning the k in k-means,” Advances in
neural information processing systems, vol. 16, 2003.

[19] T. M. Mitchell et al., Machine learning, vol. 1. McGraw-hill New York,
2007.

[20] H. Giese, N. Bencomo, L. Pasquale, A. J. Ramirez, P. Inverardi,
S. Wätzoldt, and S. Clarke, “Living with Uncertainty in the Age of
Runtime Models,” in Models@run.time: Foundations, Applications, and
Roadmaps, Lecture Notes in Computer Science, pp. 47–100, Cham:
Springer International Publishing, 2014.

[21] J. Y. Halpern, Reasoning about uncertainty. MIT press, 2017.
[22] L. H. G. Paucar and N. Bencomo, “Knowledge base k models to support

trade-offs for self-adaptation using markov processes,” in SASO, pp. 11–
16, IEEE, 2019.

[23] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-adaptive
systems,” in RE, IEEE, 2009.

[24] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“Relax: a language to address uncertainty in self-adaptive systems
requirement,” Requirements engineering, vol. 15, pp. 177–196, 2010.

[25] A. J. Ramirez, B. H. Cheng, N. Bencomo, and P. Sawyer, “Relaxing
claims: Coping with uncertainty while evaluating assumptions at run
time,” in MODELS, Springer, 2012.

[26] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with prism: A hybrid approach,” International journal
on software tools for technology transfer, vol. 6, pp. 128–142, 2004.

[27] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information
value in software requirements and architecture,” in ICSE, 2014.

[28] E. Letier and A. Van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” in Proceedings of
the 12th ACM SIGSOFT twelfth international symposium on Foundations
of software engineering, pp. 53–62, 2004.


