
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Position paper: a vision for the dynamic safety 
assurance of ML-enabled autonomous driving 

systems 

 

Alvine Boaye Belle*, Hadi Hemmati*, Timothy C. Lethbridge# 
*York University, Toronto, Canada 

#University of Ottawa, Ottawa, Canada 
alvine.belle@lassonde.yorku.ca, hemmati@yorku.ca, timothy.lethbridge@uottawa.ca

Abstract— Ensuring the progress of autonomous driving 

technology can save lives, prevent injuries, and enable reductions 

in traffic volume, accidents, and environmental damage caused by 

vehicles. Developing industry-wide safety standards and making 

sure producers of autonomous driving systems (ADSs) comply 

with them is crucial to foster consumer acceptance. Producers of 

ADSs can rely on assurance cases to demonstrate to regulatory 

authorities how they have complied with such standards. 

Assurance cases are mainly used in safety-critical domains (e.g., 

automotive, railways, avionics) to deal with high-risk concerns and 

show to stakeholders that such systems are safe according to 

domain-specific criteria. Most assurance cases are static i.e., only 

suitable before the deployment of a system. Dynamic Assurance 

Cases (DACs) have recently been introduced to provide assurance 

throughout the lifecycle of a system. However, from our 

perspective, existing standardized SACs (Static Assurance Cases) 

notations do not sufficiently support the representation of DACs. 

This hinders the standardization and adoption of DACs. In this 

position paper, we propose a novel approach aiming at extending 

existing standardized SAC notations to dynamically design DACs.  
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I. INTRODUCTION  

An Assurance Case is a “set of auditable claims, arguments, 
and evidence created to support the claim that a defined 
system/service can satisfy particular requirements” [27]. An 
Assurance Case is a document that eases the exchange of 
information between various system stakeholders (e.g., 
suppliers, acquirers), and between the operator and regulator, 
where the knowledge regarding a system’s requirements (e.g., 
safety, security, reliability) is convincingly conveyed [24, 27]. 
In assurance cases, concrete facts such as algorithms, test results, 
formal reviews, simulations, resource diagrams can serve as 
evidence relevant to desirable requirements [5, 24]. This 
evidence is combined with arguments demonstrating how that 
evidence supports the desirable requirements [5, 24]. 

Prior to their deployment, systems developed in safety-
critical domains require a strong justification that they can 
effectively support the critical requirements for which they were 
designed [22]. Thus, it is usually mandatory to develop 
compelling SACs to support that justification and allow 
regulatory bodies to certify such systems [12, 29]. This allows 

verifying the correctness of the systems’ capabilities at static 
time (prior to their deployment) to prevent system failure.  

DACs have recently been introduced to provide assurance 
past a system deployment i.e., at runtime [30]. But according to 
our analysis, existing standardized SAC notations and semantics 
do not sufficiently support the various concepts required to 
represent DACs. This hinders DAC standardization and 
adoption. Also, relying on existing DAC techniques to assure 
ADSs (autonomous driving systems) may be challenging 
because DACs may not be suitable yet to address ADS-specific 
epistemic uncertainty (i.e., unknown unknowns). 

When using existing approaches, the assurance case 
developer can neither model nor measure the epistemic 
uncertainty  an ADS may face at runtime. That uncertainty, 
usually experienced at runtime, is completely unknown and 
unpredictable, unless it is turned into aleatory uncertainty also 
called “known unknowns”  [37].Aleatory uncertainty is mostly 
due to the randomness in a system, such as lost or unobtainable 
information where the gaps are visible [37]. 

Most existing assurance case approaches appear not to be 
suitable for ML (machine learning)-enabled ADSs that operate 
throughout their lifecycle with epistemic uncertainty. In other 
words there are unknown unknowns in their risky, dynamic, 
complex and unpredictable environments, where execution 
failure may result in loss of life, severe injuries, large-scale 
environmental damage, property destruction, and major 
economic loss [3]. Thus, ADSs are likely to be unsafe at runtime 
if current certification processes are applied.  

The goal of our position paper is to show that there is a path 
towards safer ADSs. Hence, we propose an approach aiming at 
supporting: 1) higher dynamic safety assurance; 2) hazard 
elicitation and mitigation; and 3) the mitigation of industrial 
barriers preventing safety regulation compliance. 

II. BACKGROUND AND RELATED WORK 

Ensuring the progress of ADSs technology used by 
autonomous vehicles can save lives, prevent injuries, as well as 
reduce traffic, costs associated with accidents, and 
environmental damage caused by vehicles [1, 8]. 

As explained in [14, 15, 16, 17, 32], machine learning (ML) 
supports key tasks for autonomous systems (ASs) operations 



(e.g., obstacle detection, collision avoidance and path planning). 
ML models are very efficient and effective when provided with 
input they have already been trained and tested with. But they 
are considerably less effective at perceiving patterns and 
predicting outcomes when they encounter unforeseen edge-
cases. These may be risky, life-threatening situations such as 
unprecedented road conditions the ML system has not been 
exposed to before [1, 38], and could involve myriad issues such 
as construction, off-road detours, erratic drivers, complex 
accidents, unusual obstacles (sinkholes, snowdrifts, etc.), the 
need to follow human signals such as from police officers, or 
even combinations of these. These unforeseen edge cases embed 
the epistemic uncertainty an ADS may face at runtime. Thus, the 
use of ML-enabled components in ADSs must be assured to 
certify these components are fit for purpose, adequately 
integrated into their systems, and able to mitigate the edge cases. 
This is possible by relying on assurance cases. 

Assurance cases are a well-established structured technique 
used to document a reasoned, auditable argument supporting 
that a system meets some desirable requirements [24]. 
Assurance cases are structured as a hierarchy of claims, with 
lower-level claims drawing on concrete evidence, and also 
serving as evidence to justify claims higher in the hierarchy [13]. 
Assurance cases are becoming very popular because they 
provide structured argumentation allowing to communicate 
safety-critical information [35]. They are mainly used in safety-
critical areas (e.g., automotive, nuclear, avionics, healthcare) to 
deal with high-risk concerns and show stakeholders such 
systems are safe according to domain-specific criteria [13, 35].  

The Goal Structuring Notation (GSN) [19] is the most 
common graphical notation used to represent assurance cases. 
GSN diagrams are aligned with the SACM (Structured 
Assurance Case Metamodel) [27] standard that OMG (Object 
Management Group) published to promote standardization and 
interoperability [12]. SACM models the following three major 
concepts that are further explained in [24]:  

 1) A claim, which is formulated as a proposition and 
presents a statement that is either true or false, and which 
describes what the assurance case is trying to prove.  

2) Some evidence showing that the claim is reached, 
constituted from the system’s available concrete facts. 

3) A well-structured argument that links the evidence to 
the claim in a manner that supports the belief that the evidence 
supports the claim.  

GSN depicts an assurance case as a tree-like structure called 
goal structure. GSN [19] proposes a six-step bottom-up 
approach to develop goal structures by working from relevant 
available evidence to the top goal. GSN core elements are goals, 
solutions, strategies, assumptions, contexts, and justifications 
[19, 24].  A GSN goal depicts a claim, a GSN strategy depicts 
an argument and embodies the inference rules that allow 
inferring a claim from sub-claims [19]. A GSN solution depicts 
an evidence [19]. GSN assumptions are suppositions about 
claims [19]. A GSN justification explains why an inference rule 
or a claim is considered true [19]. A GSN context specifies the 
contextual information needed to interpret a claim [19]. As 
explained in the GSN specification [19], two types of links allow 

connecting GSN elements: SupportedBy and InContextOf. 
Figure 1 illustrates a partial safety assurance case for UAV 
(unmanned aerial vehicle) Collision Avoidance that we adapted 
from [25]. That assurance case is depicted in the GSN. 

Fig. 1. partial safety case for UAV Collision Avoidance from [25].  

Traditional assurance cases are static i.e., only suitable prior 
to a system’s deployment but not later. We will then refer to 
them as static assurance cases (SACs). Past the deployment of a 
system, they may become obsolete, inaccurate and inapplicable 
[20]. Dynamic assurance cases (DACs) [26, 30] have recently 
been introduced to assure through-life safety in safety-critical 
domains (e.g., aerospace) and provide trusted autonomy to 
autonomous systems (ASs) beyond their deployment [25]. The 
goal of the DACs is to assure systems throughout their lifecycle. 
Unlike SACs, DACs have runtime monitors allowing them to 
continuously assess a system requirements past its deployment 
[26, 30]. DACs allow supporting operational assessment of 
assurance and ease intervention and fault-recovery in case 
change in operational data undermines assurance at run-time 
[30]. This is crucial for the certification of ADSs since the 
uncertainty of environments in which they operate will 
inevitably involve unanticipated risky situations.  

Existing techniques (e.g., [19, 21, 23, 30, 36, 38]) for 
designing assurance cases are usually ad hoc, suitable for SACs 
only, or suitable for DACs but for a limited set of application 
domains (e.g., avionics, financial and oceanographic domains). 
These include the study by Hawkins et al. [36] that explains how 
to use SACs to assure ML components embedded in ADSs, and 
the approach in [30] that provides a generic framework to 
dynamically assure ASs but only illustrates the use of DACs to 
assure safety of ASs in the avionic domain. No design technique 
nor complementary risk-modeling technique seems suitable to 
create DACs for ADSs. 

Of particular importance, it is our observation that GSN 
needs to be extended to support the concrete syntax of DACs. 
Until this is done, DAC adoption and standardization will be 

 



hindered, reducing the ability to assure ADSs throughout their 
lifecycle. 

Our work aims at tackling the above issues by exploring the 
use of DACs to support the dynamic safety assurance of ADSs. 

III. PROPOSED APPROACH 

DACs are a relatively new class of certification techniques 
that can be used to support the continuous assessment and 
evolution of requirements reasoning, concurrently with system, 
to provide through-life assurance [30]. We therefore propose to 
use DACs to provide dynamic safety assurance to ADSs. To 
increase safety assurance at run time, we need to tackle aleatory 
uncertainty at design time and epistemic uncertainty at runtime.  

Thus, we propose new solutions to design and assess DACs 
for ADSs to dynamically assure their safety. Our work aims at 
supporting the representation, and assessment of DACs using an  
improved version of the very popular GSN controlled 
vocabulary [12]. 

We plan to build the an open source tool to support this, on 
top of the Graphical Modelling Framework. The latter will 
support the creation of editors based on metamodels defined 
using Ecore, as provided by Eclipse Modelling Framework. Our 
tool will be complementary to the ADS. Case studies will focus 
on ML-enabled ADSs. Figure 2 depicts our proposed approach. 
The latter consists in three parts that we respectively describe 
below. 

Fig. 2. High-level view of the proposed approach 

A. Part I: Providing a higher dynamic safety assurance  

We first need to create a taxonomy that identifies and 
classifies safety-related evidence, as well as confidence and 
uncertainty assessment techniques for trusted autonomy. 

To achieve that, an early tactic will be to use PRISMA 2020 
[7], a well-established reporting guideline used in various 
domains to report systematic reviews (SRs) of existing research 
and practice and we can focus on ADSs assurance, operation 
modes, operating contexts. To minimize bias when conducting 
SRs, we intend to work with at least two researchers who 
independently analyze search results, and resolve disagreements 
using common statistical approaches. This will result in an SR 
that can help create a safety assurance ontology that will 
facilitate communication [13] among an ADS stakeholders.  

Next, we intend to design DACs focusing on safety 
requirements. These are the most crucial requirements to support 
in life-critical systems such as ML-enabled ADSs. Supporting 
the creation of DACs is highly challenging. We propose an 
innovative approach to do so:  

1) Enrich GSN to support dynamic safety-related concrete 
syntax (e.g., monitors, real-time update mechanisms allowing to 

reconfigure the arguments structures based on the operating 
contexts). We may do this by analyzing various phases of ML-
enabled ADS lifecycle (e.g., design, maintenance, inspection, 
updates) [32], and taxonomy resulting from our SR;  

2) Extend to DACs the widely used six-step approach that 
the GSN working group proposed to design SACs [19]. This can 
make it possible to propose a design technique able to: 1) 
Represent through-life monitoring abilities of DACs; 2) Assure 
a ML-enabled ADS perceives its environment in a way that is 
suitable for life-critical systems. To create that design technique, 
we can propose a set of design principles that can provide 
guidelines on how to iteratively divide a dynamic claim into 
dynamic subclaims until it can be proved by evidence.  

That design technique could allow creating arguments from 
several argument patterns suitable for the safety of ML-enabled 
ADSs. These include ML safety requirement assurance 
argument patterns, ML data argument patterns, ML learning 
patterns [17, 36]. Runtime monitors can continuously assess the 
safety of ML-enabled ADS by analyzing evidence from 
environment and system state [30]. For this purpose, we can 
explore and adapt the existing runtime monitoring techniques 
presented in [2]. DACs can use as evidence some of the 
surveyed categories of evidence. These include perception data 
collected from ML-enabled ADS’s sensors and the data ML-
model uses to drive ADS by supporting various tasks such as 
path planning and motion control. Perception data includes data 
coming from radar, camera, and lidar sensors. To create 
dynamic claims/subclaims of DACs at runtime and in bottom-
up fashion, we can explore the use of a natural language 
processing (NLP) techniques [10, 28] exploiting semantic 
analysis with a natural language generation (NLG) technique 
[11]. Both can help parse collected evidence, look for their 
match in the assurance ontology, and support dynamic 
generation of DAC’s claims/sub-claims as statements. We will 
also explore the use of large language models such as the ones 
Chen et al. [9] used to generate TGRL (textual syntax of the 
Goal-oriented Requirement Language) goal models.   

The nature of support of each child GSN element to its parent 
can be specified in the GSN using support patterns [40]. To 
ensure the consistency in the DACs goal structures, we therefore 
envision to create instances of such support patterns [40] to 
properly connect parent dynamic claims to their child subclaims 
based on the nature of their support to their parent claims. 
Weaver et al. [40] further describe these support patterns. In 
particular, the Single Support Pattern, corresponds to the 
situation where a child on its own totally supports the parent 
goal. With the Linked Support Pattern, many child goals 
interdependently support their parent goals. Finally, with the 
Convergent Support Pattern, many child goals separately 
support their parent goal.  

Approaches used to assess confidence and uncertainty in 
assurance cases mostly rely on mathematical theories or models 
(e.g., Dempster-Schafer Theory or Bayesian analysis). These 
approaches usually allow computing confidence at design-time 
but may become inappropriate at run-time [4]. To continuously 
assess DACs at runtime, we can define, as in [31], a confidence 
measure that adapts one of such approaches (e.g., the approach 
we introduced in [4]) to the dynamic and stochastic nature of 

 



ADSs. This may result in a probabilistic evidence-based 
mathematical model that relies on random variables describing 
the various ADSs states [31].  The assessments made by that 
confidence measure will be possible by: 1) collecting evidence 
from ADSs sensors and; 2) evaluating confidence in the safety 
of the ADS at hand, as well as the uncertainty (risks) stemming 
from the unpredictability of its current environment.  

Epsilon is a scalable, open source, and performant OCL 
(Object Constraint Language)-like validation language that is 
compatible with many modeling technologies (e.g., EMF), and 
whose use involves low overhead [8]. We can continuously 
validate at run-time well-formedness and completeness of 
resulting DAC and absence of known unknowns in its structure 
by exploring the use of Epsilon [8] to dynamically generate 
model validation rules embodying invariants, pre-conditions 
and post-conditions. This can allow to formally verify the 
correctness of ADS’s capabilities and prevent system failure.  

We will explore the use of Epsilon to write model-to-model 
transformation rules that allow turning a DAC (i.e., an instance 
of our enriched GSN metamodel) into an EMF-compatible 
model. We can then explore using EMF to turn models into  an 
Eclipse plugin able to emulate some aspects of human-reasoning 
when making decisions. This may result in the implementation 
of a decision-making system in the form of a dynamic fuzzy 
rule-based expert system using gradient descent-style training, 
adapted from [21] and [33]. That decision system may automate 
our new confidence assessment techniques. If assurance level 
drops below given threshold prescribed by safety regulations, 
the resulting intelligent system may: 1) instruct ADS to switch 
to the most appropriate risk-mitigation strategy (e.g., pulling 
over) given the environment surrounding autonomous vehicle at 
that specific time; or 2) instruct high-resolution vehicle sensors 
to look for additional evidence in the current environment 
surrounding the vehicle to help reprogram the ML model driving 
the autonomous vehicle to properly handle the identified risks. 

In summary, Part 1 of our research will focus on enhanced 
notations suitable to represent DACs. 

B. Part II: Hazard elicitation and mitigation to increase 

dynamic safety assurance  

To further enhance the level of safety assurance obtained 
thanks to Part I, we will proceed with hazard elicitation and 
mitigation. We will use PRISMA 2020 [7] and interviews with 
diverse experts (e.g., driving instructors, autonomous driving 
tech developers, accident investigators) to systematically 
identify and categorize: 1) every known hazard (i.e., counter-
evidence) that may disrupt safe operation of an ADS at run-time; 
2) hazard analysis techniques (e.g., functional hazard analysis); 
and 3) risk mitigation strategies.  

We can then propose new risk-based arguments patterns that 
can help generate at static time claims and counter-evidence able 
to reason away various categories aleatory uncertainty by:  

1) Demonstrating in DAC how it has been mitigated in a 
system and providing supporting related evidence that falls in 
surveyed categories of evidence, including evidence related to: 
engineering rigor (e.g., process quality), functional safety (e.g., 
detection and shutdown of equipment malfunction), safety of 
intended function (e.g., resilience to requirements gaps) [1]; or  

2) By arguing in DAC such hazards do not affect credibility 
of overall claim. In this regard, like in [20], we can extend GSN 
with additional metamodel concrete syntax to support the 
representation of these new argument patterns together with the 
assurance deficits they mitigate. 

Usually, the assurance case developer can neither model nor 
measure the epistemic uncertainty (e.g., faults in logical 
reasoning that the assurance case developer was not even aware 
of) [37, 38]. That uncertainty is completely unknown and 
unpredictable, unless it is turned into aleatory uncertainty.  

Most existing approaches (e.g., [1, 30, 37, 38]) do not tackle 
epistemic uncertainty. To address that gap, we will use advanced 
ML techniques at run-time. For instance, deep reinforcement 
learning (DRL) can find solutions to a wide range of complex 
decision-making tasks usually out of reach for traditional ML. It 
allows learning from experience and can be trained using very 
few examples instead of a huge number as in traditional ML 
[34]. These advanced ML techniques can take as input counter-
evidence from the ADS’s outputs and the data of the ADS’s 
sensors. These techniques aim at dynamically predicting  edge 
cases. By allowing for eliciting some of the unforeseen risks, 
such techniques may allow turning related epistemic uncertainty 
into aleatory uncertainty (i.e., known risks). A DAC can then 
dynamically update its structure by reasoning away the resulting 
aleatory uncertainty. Data can be sent to the manufacturer: its 
overall fleet can then be able to deal with the same newly defined 
aleatory uncertainty. To obtain trustful predictions, we will 
tackle challenges in training and evolving the target ML models 
by relying on approaches such as those described in [39]. Our 
experiments will focus on concrete scenarios (e.g., pedestrian 
identification) and will aim at demonstrating that our ML 
techniques  can be beneficial to mitigate epistemic uncertainty. 

To prevent system failure, we plan to perform runtime 
verification, simulation and model checking [6]. Well-
formedness of the resulting DAC and absence of known 
unknowns could be checked at run-time by applying Epsilon on 
EMF model generated from that DAC. Runtime verification and 
model checking are computationally expensive and may not be 
suitable for systems like ADSs with real-time requirements. 
Tackling this challenge will be key to our research. 

In summary, Part II of our research will focus on novel 
techniques to mitigate hazards at run time. 

C. Part III: Analyzing barriers to safety regulation 

compliance  

Developing industry-wide automotive safety standards and 
making sure producers of ADSs comply with them is crucial to 
foster consumer acceptance and trust [1, 8].  

Safety regulations include the ANSI/UL 4600 standard for 
autonomous systems safety (2nd ed.) released in 2022 [1]. This 
is compatible with existing functional safety standards (e.g., ISO 
26262; SOTIF (ISO/PAS 21448)) and aims at ensuring ADSs 
are safe and reliable for those on road and pedestrians. Still, most 
companies developing ADSs are reluctant to comply with safety 
regulations to avoid being liable in case of accidents. This is 
further compounded by the fear that such regulations could 
hinder the deployment of autonomous vehicle technologies at 
scale, thus preventing such technologies from delivering on their 



potential [29]. To address that, it is crucial to understand 
industrial barriers to safety regulations compliance. To do so, we 
will conduct an industrial survey to identify barriers to 
enforcement of ADSs safety regulations. As in common survey 
methodologies [18], our survey can consist of series of 5-point 
Likert and open-ended question types. Participants of the survey 
can consist of up to 100 diverse companies manufacturing 
autonomous driving solutions.  

The analysis of the survey results should help make 
recommendations to revise existing safety regulations by 
making them more aligned with autonomous driving safety 
constraints. Like [30], we think it is possible to deliver such 
recommendations in the form of a safety assurance policy 
model. This is a model-based representation of assurance 
policies serving as a basis against which the sufficiency of safety 
assurance can be established by ADSs manufacturers [30]. 

In summary, part III of our research aims to make 
recommendations to enhance safety regulations. 

IV. CONCLUSION 

Hazards caused by autonomous vehicles operated by ADSs  
are sometimes fatal, which is likely to lead to corporate failure 
of manufacturers of these vehicles. In this position paper, we 
therefore propose a novel approach that aims at supporting the 
dynamic safety assurance of ML-enabled ADSs. Our approach 
has the potential to create new knowledge and innovative 
technology to mitigate edge cases at runtime and support more 
efficiently the dynamic safety assurance of ADSs.  
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