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Abstract—
These days, more and more organizations are building data

lakes as a mechanism to store the information they generate. This
information is considered as a valuable asset that, if properly
analyzed, can help to make more informed decisions. However,
since the analyses to be performed are often not known in
advance, these data are stored in a raw format. This means
that any application built on top of a data lake must carefully
elicit what data will be used for a particular analysis and how
those data will be transformed to make them all fit together into
a dataset. This data selection and preparation task is typically
performed by data scientists that write large and complicated
scripts in data management languages to extract and transform
the required data. This reduces the productivity of data scientists,
who must write large pieces of highly similar code. It also makes it
difficult for domain experts to participate in this process because
they have little understanding of these scripts. To alleviate this
problem, this work introduces a work-in-progress version of a
high-level declarative language for specifying the requirements
that a dataset coming from a data lake must satisfy. This language
is then processed to automatically generate the specified dataset,
allowing data scientists and domain experts to be agnostic about
the details of how data are exactly retrieved and transformed.

I. INTRODUCTION

Data has become a very valuable asset, being even con-
sidered the new gold by some consulting companies [1].
Consequently, organizations have started storing data about
their daily activities with the expectation of conducting various
analyses in the future to derive valuable information. Since
these analyses are not known in advance, these companies
face uncertainty regarding how they must clean, process and
store their data so that they can be efficiently retrieved by the
analysis applications.

Therefore, many companies are adopting a data storage
strategy known as data lake [2] [3], where data is stored with-
out any prior processing in its raw format. Roughly speaking,
a data lake can be seen as a large storage repository where
different data bundles are stored in heterogeneous formats. The
main advantage of a data lake is that it preserves the entirety
of the information, allowing each application to process and
transform the stored data as needed. On the other hand, data
lakes present significant challenges, such as ensuring the data

is easily searchable and structuring its internal organization
for efficient data addition and retrieval [4] [5].

Since the data in a data lake is stored in a raw format, it re-
quires extraction and processing before it can be consolidated
into a dataset in order to be analyzed. This task is currently
performed by data scientists by writing long and complex
scripts in languages like Python or R. However, this approach
presents two main problems: (1) data scientists must write
large pieces of similar code, which hinders their productivity;
and, (2) it complicates the inclusion of domain experts in
this process, who can hardly understand these scripts. Domain
experts are key for the process of selecting the data to be
included in an analysis because they have the expertise to
know the exact meaning of each piece of data and how to
interpret it.

To alleviate these problems, this work presents a language
for the specification and automated generation of datasets from
data lakes. This language provides a high-level declarative
syntax that allows data scientists and domain experts to specify
the requirements that a dataset must satisfy, focusing on what
data must be retrieved from the data lake, as well as on
what high-level operations must be used to process these data
so that they can fit all together into a dataset, and forget
about how these operations need to be exactly performed. This
specification is then processed by a set of language processors,
which execute multiple data transformation operations until
returning the specified dataset. This contributes first to increase
data scientists productivity, who can work now at a higher
abstraction level and write less code. Moreover, we expect
that domain experts can understand the syntax of these dataset
specifications more easily and, consequently, facilitate their
involvement in the data selection processes.

This work is still in progress and it is being developed in
the context of a project with LIS Data Solutions, a software
company based in Northern Spain focused on the development
of data collection and data analysis systems for clients across
different sectors.

After this introduction, this work is structured as follows:
Section II provides some background and describes the mo-
tivation for this work. Section III presents the language for



dataset specification and the framework that supports it. Sec-
tion IV comments on related work and Section V summarizes
this paper.

II. BACKGROUND AND MOTIVATION

A. Running Example

This section introduces the running example that will be
used to illustrate the different concepts that appear in this
work. This running example was provided by LIS Data So-
lutions, the software company that collaborates in this work.
Along with their clients’ data, LIS also retrieves and stores
data from different open data sources, such as the State
Meteorological Agency1. These data are used to complement
customer data in different analyses.

One of the data sources that is integrated in the data lake
provides data of logistics companies. These data are used
for the forecasting of shipment volume and service delivery
times for these companies. Specifically, we are interested
in analyzing how the weather, the economy and the traffic
conditions can influence these delivery activities. To achieve
this goal, we can use time series analysis, as described in the
next section.

B. Time Series Data Mining

Time series data mining [6] is a subfield of temporal data
mining that focuses on analyzing datasets that consist of
sequences of data points ordered by time. Temporal data
mining [7] is a knowledge area that refers to the process of
extracting valuable information from time-varying data, which
includes time series and stream data mining. Stream data
mining [8] is more oriented to the real-time processing of
continuously generated data streams. For instance, stream data
mining is widely used in Industry 4.0 [9] to analyze streams
of data coming from different assembly line sensors.

Time series data mining is very suitable for analyzing the
data contained within data lakes. In a data lake, data are
periodically incorporated over time, forming a time sequence
for which time series data mining becomes a natural analysis
technique.

Figure 1 illustrates a typical time series data mining process.
The two first steps (Figure 1, labels 1 and 2) aim to elicit
two important requirements that will drive all the analysis
process. The first step (Figure 1, label 1) identifies the business
questions that need to be answered, with the help of the busi-
ness and domain experts. This step involves understanding the
domain of the problem, defining the objectives and specifying
the scope of the analysis. In our running example, this business
question is to predict the volume of shipments of the logistics
companies.

The second step is the selection of the data sources that will
be used to address the identified questions (Figure 1, label 2).
When data is stored in a data lake, like in our running example,
this step implies exploring the data lake to pick up the relevant
data that may have influence in the business question and,

1https://www.aemet.es/en/datos\ abiertos/AEMET\ OpenData
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Fig. 1. Time series data mining process.

therefore, may help to answer it. The participation of the
domain experts in this task is key, since these experts are who
can better reason about the influence of each piece of data in
the business questions, due to their knowledge of the domain
and their professional experience.

In the next step (Figure 1, label 3), the analysis technique
and algorithms that will be used to try to answer the business
question must be selected. This step involves more technical
considerations, so it is typically undertaken by a data scientist.

Before the chosen algorithms can process the selected data
sources, we need to put all the data together into a dataset
(Figure 1, label 4). Roughly speaking, a dataset is a very
concrete tabular format in which data must satisfy certain
constraints that often depend on the algorithm to be used.
When working with a data lake, this step implies retrieving
concrete data fragments from different data bundles that may
be stored in different formats. Moreover, some data may
need to be transformed. For instance, several values might
need to be aggregated in a single value. In these cases,
domain experts’ collaboration can be critical again, since their
domain knowledge may be very helpful to ensure that data
do not lose meaning or accuracy significantly during these
transformations. This work focuses on this specific step of the
whole analysis process.

After creating a dataset, the selected algorithms are finally
executed (Figure 1, label 5) and the results reported (Figure 1,
label 6). This involves visualizing the results appropriately
and interpreting them, for which, again, the knowledge and
experience of domain experts are key.

This process is not always sequential and it can be iterative,
as indicated by the cycle of arrows in the background of
the image. For example, the reported results may raise new
questions that may require the selection of new data sources
and the refinement of the datasets. Similarly, after executing an
algorithm, we may detect that some features generates noise
and it is better to remove them, so we would need to update
the datasets.



Date Shipments Temp. Rain GDP Traffic
(°C) (mm) (trucks/h)

2019-02-07 31 13.4 1.7 965.6 1230
2019-02-08 28 10.2 0.5 965.6 1320
2019-02-09 34 11.8 0.8 965.6 1280
. . . . . . . . . . . . . . . . . .

Fig. 2. Excerpt of a dataset for our running example.

C. Problem Statement

This section details the specific problem this work aims to
solve. As it was commented in the previous section, this work
focuses on the data selection and preparation step of a time
series data mining process.

The goal of this step is to produce a dataset that can be
digested by time series analysis algorithms. These datasets are
tabular data structures where each row represents a specific
point of time. In many cases, the period between rows is
uniform, so we can say that each row is placed in the dataset
according to a sampling rate. Figure 2 shows an example of a
toy dataset for our case study, where data are sampled daily.

The first problem we face to generate a dataset such as
shown in Figure 2 is that each column comes from separate
data bundles that might be in different formats. In our case, the
information of shipments of the logistic company are stored
in a single file using the Apache Parquet format. Parquet is
a very popular format in data lake and big data systems as
it allows the storage of tabular data in very compact sizes.
Each row of this Parquet file contains data about a single
shipment of the logistic company. These data includes its
sender, receiver, origin, destination, weight, number of items,
and delivery time, among other elements. On the other hand,
weather data are added daily to the data lake in a JSON
file that contains information about temperature, rainfall or
wind speed, among other elements, for different Spanish cities.
Traffic conditions are incorporated once per month in an XML
file that specifies the total number of cars and trucks that have
circulated in that month by all Spanish highways. For the
economy indicators, data about the Spanish Gross Domestic
Product (GDP), contained in a JSON file, are added to the
data lake once each three months.

Therefore, if we wish to analyze the period corresponding
to the first semester of 2023, to collect the required data, we
must perform the following actions:

1) For the shipment data, extract the concrete set of rows
from the Parquet file corresponding to the desired period.

2) For the weather data, retrieve the JSON files that
correspond to the first semester of 2023, and extract
temperature and rainfall data for a specific city from
each file.

3) For the GDP, retrieve the JSON files corresponding to
the two first quarters of 2023 and select the required
data.

4) For the traffic, retrieve the XML files of the first six
months of 2023 and extract the numbers of trucks per
hour for each month.

As it can be noticed, depending on each source, we must
retrieve a different number of files and navigate its internal
structure. This is a very technical aspect that is beyond the
typical skills of domain experts.

A second problem we need to solve is the harmonization or
matching of the sampling frequencies of each variable to be
included in the dataset. As it can be observed, in our running
example, each variable is recorded at a different rate. For
instance, shipment information is recorded daily but it is stored
at the shipment level, not in a temporal basis. Therefore, to
produce a single data per day, we need to group all shipments
per day and count how many of them are handled each day.
Weather data, fortunately, is in a daily basis, so we do not
need to transform it. However, economic and traffic data are
quarterly and monthly, respectively. Therefore, we need to
design a strategy to generate a data for each day from these
values.

For this purpose, there are several strategies. For example,
we may simply copy a monthly value to each day of the
month. On the other hand, we may use different interpolation
techniques for the missing values at these points. The col-
laboration of domain experts becomes important again in this
point, since they have the knowledge to better decide how to
transform each data. For example, in the case of the GDP, since
the economy does not change suddenly from one day to the
other, it would make sense to use an interpolation technique
that shows how this indicator increases or decreases smoothly
during each quarter.

Finally, a third problem to be solved is how to deal with
noise, outliers or missing data. For example, the logistic
company may close one day for whatever reason, such as an
important internal reorganization, so there were not records
for that day. In that case, again, we need to decide how to
deal with this issue. We may simply copy the value of the last
day or use the average value for that week or month, among
other options.

Currently, all these tasks are carried out mainly by data
scientists, who write large and complicated scripts in lan-
guages like Python or R to extract data from the data lake,
and process and transform them. This has two main problems:
(1) it decreases their productivity; and, (2) it complicates the
inclusion of domain experts in this process, as they perceive
these scripts as difficult to understand and work with.

To alleviate this problem, this work proposes a language that
allows data scientists to work at a higher abstraction level,
becoming more productive and allowing domain experts to
get more easily involved in the dataset creation process. Next
section describes this language as well as the framework that
supports its.

III. THE HANNAH LANGUAGE AND FRAMEWORK

Figure 3 provides a general overview of the framework
we are working on as a solution to the problem described
in previous sections. This framework assumes that the data
available in the data lake are described in a data catalog. A
data catalog [10] is a software system specifically designed
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Fig. 3. General overview of our solution

1 d a t a s e t S h i p m e n t F o r e c a s t i n g
2 sampling d a i l y
3 from 2 0 2 3 / 0 1 / 0 1 to 2 0 2 3 / 0 6 / 3 0
4 with c u r r e n t D a y as index
5 with f e a t u r e s
6 from S h i p m e n t I n f o r m a t i o n {
7 Shipments i s
8 c o u n t ( i d [ o r d e r D a t e = c u r r e n t D a y ] ) }
9 from WeatherData [ c i t y = ‘ S a n t a n d e r ’ ] {

10 t e m p e r a t u r e ;
11 r a i n ;}
12 from EconomicData {
13 gdp
14 expanded by l i n e a r i n t e r p o l a t i o n ; }
15 from T r a f f i c D a t a {
16 t r u c k s expanded by r e p e t i t i o n ; }

Listing 1. An example of Hannah specification.

to keep a well-organized and searchable inventory of all data
assets in an organization. Data catalogs are strongly connected
to data lakes, as they become a natural solution to describe
what data are contained in the data lake and how to locate
them.

Thus, to generate a dataset for time series data mining, the
data scientists and the domain experts would start navigating
the data catalog to find those data, or features, that may be
helpful for their objectives. As a result, they get a set of data
bundles and feature identifiers, along with a set of potential
filters, which might be applied to these elements. For instance,
in the case of the weather information, the data catalog would
specify that we can filter the information by city.

Using this information and using our language, the data
scientists and the domain experts would write a dataset spec-
ification like shown in Listing 1. This specification contains
two different parts: the first one defines the general shape of
the dataset (lines 1 to 4); and the second one specifies the
selection of data to be included in the dataset (lines 5 to 16).

In our case, the first part indicates that the dataset will be
named ShipmentForecasting (line 1), it will have a row per
day or daily sampling (line 2), and it will cover the time
frame corresponding to the first semester of 2023 (line 3).
Moreover, the variable currentDay will hold the value of the

day corresponding to each row during the generation process
(line 4).

Once the base format for the dataset is defined, the data
scientists and the domain experts specify what data must be
included in it. In order to do it, they specify the name of
the data bundle, or blob, to be processed, and the features to
be extracted from that data bundle. For example, lines 9 to 11
specify that the temperature and rain values must be extracted
from the WeatherData files.

Moreover, they can add filters to these data bundles to
specify that they are interested in just a portion of the whole
set of data. For example, line 9 specifies that only the weather
data corresponding to the city of Santander will be considered.

Data scientists can also add calculated values to the output
dataset. For instance, lines 7 and 8 specify that the number of
shipments is calculated by counting the number of identifiers
corresponding to shipments that belongs to a same day.

Finally, for each feature that does not conform to the
sampling rate of the dataset, data scientists and domain experts
must specify how to transform it. For example, line 15
indicates that the GDP for each day is calculated using linear
interpolation.

To process this specification, two different modules are
executed: the feature selector and the feature processor. The
feature selector communicates with the Data Catalog Access
API to retrieve the selected data. The Data Catalog Access
API is basically a mechanism to uniform the communication
with different concrete data catalog and data lake technologies.
This way, we isolate the feature selector from particularities
of concrete technologies and we facilitate the incorporation
of new data catalog and data lake technologies into our
framework.

To retrieve feature data, the Data Catalog Access API firstly
accesses to the Data Catalog to get references to the locations
where these data are stored in the data lake. Then, it invokes
different data fetchers to extract the desired data from these
specific locations. The data fetchers are software components
able to extract data from concrete data lake technologies
and data formats. The data fetchers are comprised of two
subcomponents: the blob downloader and the data extractor.
The first ones get blobs, i.e. data blocks, from specific data
lakes technologies e.g., Azure Data Lake, whereas the second
ones retrieve specific pieces of data from these data blocks,
e.g, an attribute value of a specific object in a JSON file.

All the retrieved data are passed to the Feature Processor,
which is in charge of automatically transforming the raw
data to create a curated dataset. This processing uniforms the
sampling frequency of each feature, using the information
provided by the dataset specification. After that, the final
dataset is generated.

IV. RELATED WORK

In this section, we will discuss related work in the areas
of data lake management, time series data integration, and
automation of data preprocessing tasks and dataset generation.



Data lakes have gained popularity as scalable and cost-
effective solutions for storing and managing large volumes
of heterogeneous data. They enable organizations to store raw,
unprocessed data and transform it into valuable insights. How-
ever, data lake management poses challenges, including the
extraction and integration of diverse datasets within data lakes.
Several studies have proposed frameworks and approaches for
efficient data lake management [11], [12], [13].

Among the proposed frameworks, CLAMS stands out as a
system designed to discover and enforce expressive integrity
constraints from large amounts of data in a data lake. CLAMS
addresses the assessment of data quality and cleaning of
heterogeneous data sources, tasks prior to data integration, by
efficiently detecting errors and interacting with human experts
for validation and data repairs. It has been successfully de-
ployed in a real large-scale enterprise data lake, demonstrating
its ability to uncover data inconsistencies and errors early in
the data processing stack.

Furthermore, ALITE is a proposal for the scalable integra-
tion of tables that may have been discovered using join, union,
or correlated table search. It addresses the underexplored area
of proper integration of discovered tables by relaxing the
assumptions about shared attribute names, completeness, and
acyclic join patterns in tables. In order to do it, ALITE exploits
a new Full Disjunction algorithm that aims to be more efficient
integrating real data lake tables than existing baselines.

Another notable system for data lake management is Deep-
Dive, which specializes in extracting relational databases from
dark data, such as text, tables, and images that cannot be
exploited by standard relational tools. It offers high precision
and recall at a reasonable engineering cost, allowing analysts
to create databases with accuracy comparable to human anno-
tators. DeepDive has been successfully deployed in various
domains, including insurance, materials science, genomics,
paleontology, and law enforcement.

These works highlight the importance of addressing the
challenges associated with data extraction and integration
within data lakes. However, there is still a need for compre-
hensive solutions that specifically address the extraction and
integration of time series datasets from data lakes [5], like the
language and the framework that we have introduced in this
work do.

V. CONCLUSIONS

This work has presented a work-in-progress version of
a high-level language for the specification and automated
generation of temporal datasets from data lakes. The language
allows data scientists to work at a higher abstraction level,
which we expect that contributes to increase their productiv-
ity. As an indicator of the advantages of this language, to
build manually the dataset corresponding to specification of
Listing 1, we had to write approximately 700 lines of Python
code, whereas in our language the same work can be done
with just around 20.

Moreover, we expect that the high-level declarative syntax
of our language eases the participation of domain experts in

this process. This language may also be used inside self-
service business intelligence approaches [14]. In these ap-
proaches, domain experts build dashboards and reports by
themselves that help them visualize data and make decisions.
Inside this paradigm, our language could be used to build
datasets that would be later visualized in an appropriate
dashboard.

As commented, this work is in progress, more specifically,
in its initial steps. We still need to refine the grammar of our
language by applying it to a wider range of case studies that
cover a comprehensive set of scenarios for dataset generation.
Once we have agreed on a definitive grammar, we need to
implement each component of our framework, for which we
have sketched its initial design.
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